MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Применение производной при нахождении предела

Название:Применение производной при нахождении предела
Просмотров:174
Раздел:Математика
Ссылка:Скачать(175 KB)
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им.Ф. СКОРИНЫ Математический факультет Кафедра математического анализа Применение производной при нахож

Самые свежие новости со всего мира. Мы работаем для вас 24 часа в сутки.
www.24da.ru
Регистрация доменов RU, SU от 400 рублей. Прогрессивные скидки.
www.direg.ru

Часть полного текста документа:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им.Ф. СКОРИНЫ

Математический факультет

Кафедра математического анализа

Применение производной при нахождении предела

Курсовая работа

Исполнитель Бурцева Е.А.

студентка группы М-43

Научный руководитель Астапович Г.Е.

ГОМЕЛЬ 2009


Содержание

Введение

1. Бесконечно малые и их сравнения; символы "o малое" и "о большое"

2. Основные теоремы дифференциального исчисления

2.1 Теорема Ферма о нуле производной

2.2 Теорема Ролля о нуле производной

2.3 Теорема Лагранжа о конечных приращениях

2.4 Теорема Коши о конечных приращениях

3. Раскрытие неопределенностей. правило лопиталя

3.1 Раскрытие неопределенностей вида 0/0

3.2 Раскрытие неопределенностей вида ¥/¥

3.3 Использование правила Лопиталя для выделения главных частей и определения порядков бесконечно больших

3.4 Раскрытие неопределенностей вида 0¥, 1¥, 00,¥0,¥ - ¥

4. Формула тейлора. вычисление пределов с помощью формулы тейлора

4.1 Многочлен Тейлора. Формула Тейлора с остаточным членом Rn.

4.2 Остаток в форме Пеано

4.3 Другие формы остатка в формуле Тейлора

4.4 Разложение некоторых элементарных функций по формуле Тейлора

4.5 Примеры использования стандартных разложений для представления функций по формуле Тейлора и для вычисления пределов

4.6 Формула Тейлора для четных и нечетных функций

Заключение

Список использованных источников


Введение

Данная курсовая работа раскрывает применение производной при вычислении пределов. Вычисление пределов важная часть математического анализа, поскольку практически весь курс математического анализа опирается на понятие предела.

Действительно, производная, интеграл, непрерывность функции - все эти понятия используют предел.

Курсовая работа состоит из четырех разделов.

В первом разделе раскрывается понятие скорости роста функции, вводятся символы "О большое" и "о малое", и важное понятие, для вычисления пределов, эквивалентные функции.

Во втором разделе приведены основные теоремы дифференциального исчисления, служащие необходимой основой для правила Лопиталя и формулы Тейлора.

В третьем разделе приведено правило Лопиталя и методы раскрытия всех типов неопределенностей. Примеры для этого и последующего раздела были взяты из [Марон].

В четвертом разделе приведен вывод формулы Тейлора и показано применение формулы Тейлора для нахождения эквивалентных функций и вычисления пределов.


1. Бесконечно малые и их сравнения; символы "o малое" и "о большое"

 

Определение. Бесконечно малой в x0 называется функция f (x) такая, что

Свойства бесконечно малых функций:

1) Критерий существования конечного предела функции

Û$ б. м. функция a (x) при x®x0: f (x) =A+a (x)

2) a (x),b (x) б. м. Þ a (x) +b (x) б. м.

3) Произведение бесконечно малой функции на ограниченную является бесконечно малой функцией.

4) Произведение бесконечно малых функций является бесконечно малой функцией.

Определение. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Правовое регулирование порядка исполнения налоговой обязанности
Просмотров:333
Описание: Содержание: Введение 1.  Налоговое обязательство и его признаки 2.  Основания возникновения, изменения и прекращения налоговой обязанности по оплате налогов и сборов 3.  Исполнение налоговой обяза

Название:Проблемы реализации механизма охраны общественного порядка при проведении массовых мероприятий
Просмотров:186
Описание: СОДЕРЖАНИЕ Введение 1.  Понятие и виды массовых мероприятий, и факторы, оказывающие влияние на обеспечение общественного порядка и безопасности при их проведении 2.  Задачи органов внутренних дел

Название:Пределы. Сравнение бесконечно малых величин
Просмотров:248
Описание: Контрольная работа Дисциплина: Высшая математика Тема: Пределы. Сравнение бесконечно малых величин Содержание   1. Предел числовой последовательности 2. Предел функции 3. Второй замечательный преде

 
     

Вечно с вами © MaterStudiorum.ru

.