MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Программа вычисления минимума заданной функции

Название:Программа вычисления минимума заданной функции
Просмотров:113
Раздел:Информатика, программирование
Ссылка:Скачать(198 KB)
Описание: 1. Индивидуальное задание Вычислить минимум функции F(x)=L(x1)x2-2.5L(x2)x-3 на отрезке [a;b] с точностью ε. L(x1), L(x2) значения интерполяционного многочлена, построенного для таблично заданной функции f(x) в точках x1, x2. Ис

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

1. Индивидуальное задание

Вычислить минимум функции F(x)=L(x1)x2-2.5L(x2)x-3 на отрезке [a;b] с точностью ε.

L(x1), L(x2) значения интерполяционного многочлена, построенного для таблично заданной функции f(x) в точках x1, x2.

Исходные данные:

a=0; b=2;

x1=0.041770;

x2=0.587282;

ε=10-4;

x 0 0.1 0.2 0.3 0.4 0.5 0.6 f(x) 1.858652 1.851659 1.851401 1.848081 1.841914 1.833125 1.821948

 


2. Постановка задачи и формализация

 

Для решения поставленной задачи необходимо разработать программные модули, выполняющие следующие действия:

- главный модуль, получающий исходные данные (таблично заданную f(x), a, b, x1, x2, ε), передающий их на обработку и выводящий промежуточные и конечные результаты (L(x1), L(x2), найденный минимум функции)

- модуль поиска значения интерполяционного многочлена L(x1), L(x2)

- модуль поиска минимума функции F(x) численным методом, использующий L(x1), L(x2) как коэффициенты при x2 и x


3. Выбор, обоснование, краткое описание методов

3.1 Поиск значений интерполяционного многочлена в точках x1 и x2

 

3.1.1 Постановка задачи

Требуется найти L(x1), L(x2) - значения интерполяционного многочлена, построенного для таблично заданной функции f(x) в точках x1,x2 Здесь решается задача аппроксимации, которая состоит в замене некоторой функции

у = f(х) другой функцией g(х,а0,а1,...,an) таким образом, чтобы отклонение g(х,а0,а1,...,an) от f(x) удовлетворяло в некоторой области (на множестве X) определенному условию. Этим условием является g(xi,a0,a1,…an)=f(xi) при i=0,n, которое означает, что аппроксимируемая функция f(x) совпадает с g(xi,a0,a1,…an) в т.н. узлах интерполяции x0,x1,…,xn. Это частный случай аппроксимации, называемый интерполяцией.

 

3.1.2 Выбор и описание метода

Задача интерполяции может быть решена множеством методов, среди которых:

1)  интерполяционный многочлен Лагранжа

интерполяционные формулы Ньютона Выберем для решения задачи интерполяции интерполяционный многочлен Лагранжа, так как его построение просто в алгоритмизации, не требует вычисления конечных разностей функции, , может быть умещено в одну небольшую процедуру – функцию.

Кроме того, метод Лагранжа работает и для неравноотстоящих интерполяционных узлов, к тому же не имеет различий, если точки x1 и x2 для поиска значений L(x1), L(x2) лежат в начале или в конце отрезка, где таблично задана функция.

Описание метода:

Задача интерполяции будем решать построением многочлена Лагранжа, который имеет вид:

 

Степень многочлена n обеспечивается n+1 интерполяционным узлом. Для задания таблицы значений функции будем использовать два массива x() и y(). Полином должен удовлетворять условию Ln(xi)=y(i)

3.2 Поиск минимума функции F(x) на отрезке [a;b]

 

3.2.1 Постановка задачи

Необходимо численным методом найти минимум функции F(x)=L(x1)x2-2.5L(x2)x-3

на отрезке [a;b] с точностью ε, при том, что L(x1) и L(x2) – коэффициенты, полученные вычислением полинома Лагранжа в точках x1, x2. Это задача одномерной оптимизации.

Выбор метода: Для решения задачи одномерной оптимизации существует множество методов, среди которых:

1)  метод прямого перебора

2)  метод дихотомии

3)  метод золотого сечения

4)  метод Фибоначчи

5)  метод касательных

6)  метод Ньютона

оптимизация методом квадратичной интерполяции Выберем метод дихотомии, т.к. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:80
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:64
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:188
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:133
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:245
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

 
     

Вечно с вами © MaterStudiorum.ru