MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Производная, дифференциал и интеграл

Название:Производная, дифференциал и интеграл
Просмотров:149
Раздел:Математика
Ссылка:Скачать(126 KB)
Описание: КОНТРОЛЬНАЯ РАБОТА по высшей математике Содержание: 1. Пределы последовательностей и функций. 2 2. Производная и дифференциал. 3 3 Геометрические изложения и дифференцирова

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

КОНТРОЛЬНАЯ РАБОТА

по высшей математике
Содержание:

1. Пределы последовательностей и функций. 2

2. Производная и дифференциал. 3

3 Геометрические изложения и дифференцированные исчисления (построение графиков) 4

4. Неопределенный интеграл. 7

5. Определенный интеграл. 9

6. Функции нескольких переменных, дифференцированных исчислений. 11

Литература. 12

1. Пределы последовательностей и функций

 

Числовой последовательностью  называется числовая функция, определенная на множестве натуральных чисел. Задать числовую последовательность означает задать закон, по которому можно определить значение любого члена последовательности, зная его порядковый номер п; для этого достаточно знать выражение общего или п-го члена последовательности в виде функции его номера: .

В основе всех положений математического анализа лежит понятие предела числовой последовательности. Число А называется пределом числовой последовательности , если для любого сколь угодно малого положительного числа e существует такой номер , зависящий от выбранного e, начиная с которого все члены последовательности отличаются от А по модулю меньше, чем на e, т. е.

  при   .

Если последовательность  имеет предел А, то она называется сходящейся (к числу А) и этот факт записывают следующим образом:

.

Пусть функция  определена в некоторой окрестности точки . Выберем в некоторой окрестности этой точки какую-нибудь последовательность  сходящуюся к точке : . Значения функции в выбранных точках образуют последовательность ,  и можно ставить вопрос о существовании предела этой последовательности.

Число А называется пределом функции  в точке , если для любой сходящейся к  последовательности значений аргумента, отличных от , соответствующая последовательность значений функции сходится к числу А, т. е.

.

Возможно иное определение предела функции в точке: число А называется пределом функции  при , если для всякого положительного числа e можно указать другое положительное число d (зависящее от выбора e) такое, что абсолютная величина разности  будет меньше e, когда абсолютная величина разности  будет меньше , но больше нуля

,  если      при   .

Таким образом, первое определение предела функции основано на понятии предела числовой последовательности, и его называют определением на «языке последовательностей». Второе определение носит название «на языке ».

Кроме понятия предела функции в точке, существует также понятие предела функции при стремлении аргумента к бесконечности: число А называется пределом функции  при , если для любого числа  существует такое число d, что при всех  справедливо неравенство : .

Теоремы о пределах функций  являются базой для общих правил нахождения пределов функций. Можно показать, что арифметические операции над функциями, имеющими предел в точке , приводят к функциям, также имеющим предел в этой точке.

Примеры

Найти предел функции      

Решение: Имеем неопределенность вида . Для ее раскрытия разложим числитель и знаменатель на множители и сократим на общий множитель , который при  не равен нулю. В результате неопределенность будет раскрыта.

2. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:79
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:64
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:186
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:133
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:244
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

 
     

Вечно с вами © MaterStudiorum.ru