MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Авиация и космонавтика -> Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение

Название:Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение
Просмотров:173
Раздел:Авиация и космонавтика
Ссылка:Скачать(111 KB)
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ КИЕВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Шевченко Факультет физики и астрономии РЕФЕРАТ   НА ТЕМУ: ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ МЕТРИКА,УРАВНЕНИЯ ГЕОДЕЗИЧ

Часть полного текста документа:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

КИЕВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Шевченко

Факультет физики и астрономии

РЕФЕРАТ

 

НА ТЕМУ: ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ МЕТРИКА,УРАВНЕНИЯ ГЕОДЕЗИЧЕСКИХ. НЬЮТОНОВО ПРИБЛИЖЕНИЕ


Выполнила: студентка ІV курса

Группа 103 В

Голуб Наталия

Киев 2009


Содержание

 

1. ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ МЕТРИКА

1.1 Скорость света

1.2 Шварцшильдовы координаты

1.3 Изотропные координаты

2. УРАВНЕНИЯ ГЕОДЕЗИЧЕСКИХ

2.1 Уравнение энергии

2.2 Шкалы времени

3. НЬЮТОНОВО ПРИБЛИЖЕНИЕ


1. ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ МЕТРИКА

В четырехмерном римановом пространстве общее выражение для интерваламежду двумя событиями выражается производными

 следующим образом:

 (1.1.1)

где— свободные индексы (а не обозначения степеней), и, кроме того, принято обычное правило суммирования (повторяющийся свободный индекс предполагает суммирование по всем его значениям 0, 1,2, 3). Таким образом, выражение (1.1.1) представляет собой сумму 16 членов. Значения— функции координат; они определяют собой метрику пространства.

В соответствии с общей теорией относительности эта метрика зависит от распределения материи; значенияудовлетворяют некоторым дифференциальным уравнениям в частных производных, известным как уравнения Эйнштейна. Такая метрика называется пространственно-временной.

Последовательность координат движущейся частицы описывает ее «мировую линию», в частности, мировая линия частицы, свободно перемещающейся в гравитационном поле, называется геодезической.

Для наших целей достаточно ограничиться рассмотрением статического сферически симметричного поля, создаваемого единственной изолированной массой. Отождествимс пространственными координатами относительно центра симметрии, а временной координатой, обозначив ее через t. Предположение о статичности поля подразумевает, что значенияне являются функциями t, а радиальный масштаб может быть определен как произвольная функция радиуса. Поскольку этот масштаб выбран, дифференциальные уравнения, описывающие геодезическую, заданы полностью.

Тем не менее остается свободным еще выбор пространства координатчто эквивалентно выбору геометрической проекции при построении двухмерных карт. Аткинсон [8] показал, что релятивистские свойства сферически симметричного поля можно строго описать в рамках трехмерного евклидова пространства, поскольку предположение о сферической симметрии подразумевает неизменность вида метрики при евклидовых преобразованиях пространственных координат.

Принимая такую точку зрения, мы определяем евклидово пространство тремя взаимно ортогональными декартовыми осями с началом в центре симметрии; эта система координат описывает покоящуюся систему отсчета. Определим координатный вектор х и координатную скоростькак трехмерные евклидовы векторы, компоненты которых соответствен

Если— единичный вектор в направлении х, то наиболее

общее выражение интервалав случае статического сферически симметричного поля имеет вид

 (1.1.2)

 

где — константа,— функции радиуса (в этойформуле и далее все индексы — показатели степени).

Рассмотрим только так называемые временноподобные интервалы, для которых  в этом случае т называется «собственным» временем. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:119
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:117
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

Название:Система координат канви
Просмотров:92
Описание: Зміст Вступ Розділ 1. Теоретична частина 1.1 Компонент Image і деякі його властивості 1.2 Вивід зображень за допомогою пікселів 1.3 Збереження конфігурації в файлах .ini Розділ 2. Практична частина 2.1 Код гри

Название:Социологический анализ семьи в единстве структурных и динамических координат
Просмотров:61
Описание: Содержание 1. Социологический анализ семьи в единстве структурных и динамических координат. Семья как социальный институт и как социальная группа 2. Типология семейных структур и их основные разновидности.

Название:Рассказ "Загадка" как выражение творческого стиля В.В. Вересаева
Просмотров:140
Описание: Рассказ «Загадка» как выражение творческого стиля В. В. Вересаева Введение Предметом нашего исследования стал рассказ В. В. Вересаева «Загадка» (1887). Вересаев Викентий Викеньтевич, нас

 
     

Вечно с вами © MaterStudiorum.ru