1. Расчет линейной электрической цепи при периодическом несинусоидальном напряжении
Задание 6
Приложенное несинусоидальное напряжение описано выражением:
Решение
Найти действующее напряжение .
;
;;
Приложенное несинусоидальное напряжение будет описано рядом:
Действующее напряжение .
Вычислить сопротивления цепи ,, и токи ,, на неразветвленном участке цепи от действия каждой гармоники приложенного напряжения.
Сопротивление цепи постоянному току (w = 0)
Постоянная составляющая тока на неразветвленном участке цепи
Сопротивление цепи на частоте w (для первой гармоники)
Комплексная амплитуда тока первой гармоники на неразветвленном участке цепи
;
Ток первой гармоники на неразветвленном участке цепи
.
Сопротивление цепи на частоте 3w (для третьей гармоники)
Комплексная амплитуда тока третьей гармоники на неразветвленном участке цепи
; .
Ток третьей гармоники на неразветвленном участке цепи
.
Определить мгновенный ток на неразветвленном участке и действующий ток .
Ток на неразветвленном участке цепи
;
.
Действующее значение тока на неразветвленном участке цепи
;
.
Рассчитать активную и полную мощности цепи.
Активная мощность цепи
;
; ; ,
где b1, b3, b5 – начальные фазы гармоник напряжения;
a1, a3, a5 – начальные фазы гармоник тока.
Полная мощность цепи
; .
Построить кривые , .
Периодическая несинусоидальная ЭДС и ее представление тремя гармониками.
2. Расчет не симметричной трехфазной цепи
Дана схема 8
Решение
Для симметричного источника, соединенного звездой, при ЭДС фазы А
ЭДС фаз В и С:;
.
Расчетная схема содержит два узла – и . Принимая потенциал узла , в соответствии с методом узловых потенциалов получим:
,
где ;
;
;
;
Так как: .
То с учетом приведенных обозначений потенциал в точке
.
Тогда смещение напряжения относительно нейтрали источника N
Линейные токи:
Составить баланс мощностей
Комплексная мощность источника
;
Активная мощность цепи равна суммарной мощности потерь в резисторах:
.
Реактивная мощность цепи
.
Видно, что баланс мощностей сошелся:
.
.
Напряжения на фазах нагрузки:
;
;
;
;
Токи:
Построить в масштабе векторную диаграмму токов и потенциальную топографическую диаграмму напряжений,
,.
,,,
,
,,
Все вектора строятся на комплексной координатной плоскости.
Можно сначала построить вектора напряжений в ветвях, а потом провести вектор из начала координат в точку, в которой сойдутся напряжения ветвей, этот вектор должен соответствовать вектору напряжения смещения нормали. Проводим вектор так, чтоб он заканчивался в конце вектора , проводим вектор так, чтоб он заканчивался в конце вектора . Проводим вектор так, чтоб он заканчивался в конце вектора . ............