Часть полного текста документа:Расчет стационарного токораспределения в условиях смешанной кинетики Болотнов А.М. Рассматривается математическая модель стационарного электрического поля в электрохимической системе с учетом омического падения потенциала в электролите и концентрационных ограничений в приэлектродных диффузионных слоях. Предлагается итерационный метод решения задачи. Результатами расчетов являются распределения плотности тока, потенциала и концентрации металлоопределяющих ионов на границах электродов. Анализируется влияние некоторых параметров на процессы электроосаждения в электролите меднения с учетом смешанной кинетики. Введение Известно, что прохождение электрического тока в электрохимических системах (ЭХС) сопровождается омическим падением потенциала в объеме электролита и поляризацией электродов, которая складывается из концентрационного и поверхностного перенапряжения [1]. В гальваническом производстве процесс электроосаждения металла при высоких плотностях тока сопровождается концентрационными ограничениями, следствием чего является наличие предельного тока на катоде [2]. Если для исследуемого режима имеются экспериментальные вольтамперные характеристики (поляризационные кривые), то граничные условия в математической модели могут быть построены на основе имеющихся поляризационных кривых. При этом используется, как правило, кусочно-линейная аппроксимация данных экспериментальных зависимостей [3, 4]. Математические модели и алгоритмы численных расчетов электрических полей в ЭХС различной геометрии на основе экспериментальных данных разрабатывались в [5-7]. В данной работе рассматривается стационарный процесс электроосаждения металла в разбавленном водном растворе электролита. В объеме электролита, за исключением диффузионных приэлектродных слоев, предполагается выполнение закона Ома для плотности тока и уравнения Лапласа - для потенциала [8]. Перенос ионов в электролите происходит под действием конвекции и миграции, в приэлектродных слоях - под действием диффузии и миграции. Полная поляризация электродов складывается из концентрационного перенапряжения, связанного с диффузионными ограничениями, и поверхностного перенапряжения, связанного с гетерогенной электродной реакцией [9-11]. Раздельный учет концентрационного и поверхностного перенапряжений дает возможность оценить вклад каждого из них в общую поляризацию электродов при различных режимах электроосаждения. Математическая модель Рассматривается модель стационарного поля электрического тока в области ( с границей S=(Se, =((S, где индекс принимает значение на границах анодов, - катодов и - изоляторов. Распределение потенциала (, плотности тока j и концентрации металлообразующих ионов cопределяется решением задачи: , ; (1) , ; (2) , ; (3) , (4) , ; , , ; (5) , , ; (6) , , ; (7) , , , (8) где ?- оператор Лапласа, ? - удельная электропроводность среды, F - постоянная Фарадея, R - универсальная газовая постоянная, - абсолютная температура, je?, ?e - кинетические параметры, определяемые по экспериментальным данным (ток обмена и кажущиеся коэффициенты переноса), n - число электронов, участвующих в реакции, te - число переноса, De - коэффициент диффузии ионов, ?e - коэффициент активности; ?d - толщина диффузионного слоя на границе электрод-электролит; c(, ce - концентрация ионов в глубине электролита и на границе электрода, ,, - концентрационное, поверхностное и общее перенапряжение (поляризация) электродов, (e - потенциал металла электрода, ? - граничный потенциал. ............ |