MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Решение дифференциальных уравнений. Обзор

Название:Решение дифференциальных уравнений. Обзор
Просмотров:95
Раздел:Информатика, программирование
Ссылка:Скачать(140 KB)
Описание: Нижегородский государственный технический университет Павловский филиал Кафедра «Общеобразовательные и общепрофессиональные дисциплины» КУРСОВАЯ РАБОТА по информатике на тему: «

Часть полного текста документа:

Нижегородский государственный технический университет

Павловский филиал

Кафедра «Общеобразовательные и общепрофессиональные дисциплины»

КУРСОВАЯ РАБОТА

по информатике

на тему:

«Решение дифференциальных уравнений. Обзор»

Выполнила: Аверина Л.А

Группа. ТМв 151001-09

Проверила: Ловыгина М.Б

Павлово 2010г.


Оглавление

Введение

1 Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

1.2 Задача Коши

1.3 Метод Эйлера

1.4 Модифицированный метод Эйлера

1.5 Практическая часть

2 Решение дифференциальных уравнений с помощью Mathcad

2.1 Метод Эйлера

2.2 Метод Эйлера с шагом h/2

2.3 Метод Рунге – Кутты

Заключение

Список литературы


Введение

Уравнение  называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид

Решением этого уравнения на интервале I=[a,b] называется функция u(x).

Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0.

Таким образом, численные методы позволяют вместо нахождения функции y=F(x) (3) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели. Например задачи электродинамики системы взаимодействующих тел (в модели материальных точек), задачи химической кинетики, электрических цепей. Ряд важных уравнений в частных производных в случаях, допускающих разделение переменных, приводит к задачам для обыкновенных дифференциальных уравнений – это, как правило, краевые задачи (задачи о собственных колебаниях упругих балок и пластин, определение спектра собственных значений энергии частицы в сферически симметричных полях и многое другое)


1 Обзор методов решения в Excel

 

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y' = F(x,y) (1) является метод четвертого порядка, в котором вычисления производятся по формуле:

yk+1 = yk +(k1 +2k2 +2k3 +k4 )/6,                                                        (2)

где

k1 = Fk h = F(xk , yk )h

k2 = F(xk +h/2, yk +k1 /2)h

k3 = F(xk +h/2, yk +k2 /2)h

k4 = F(xk +h, yk +k3 )h,

k = 0, ..., n-1

h = (xf -x0 )/n                                                                                  (3)

1.2 Задача Коши

Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:

,                                                                          (4)

Разобьём промежуток [a,b] на N частей . Обозначим , где u(x) –точное решение задачи Коши, и через  значения приближенного решения в точках . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru