MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Решение систем нелинейных уравнений методом Бройдена

Название:Решение систем нелинейных уравнений методом Бройдена
Просмотров:77
Раздел:Информатика, программирование
Ссылка:Скачать(237 KB)
Описание: Федеральное агентство по образованию ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Факультет автоматики и э

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Федеральное агентство по образованию

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматики и электромеханики

Кафедра «Автоматизированные и вычислительные системы»

Специальность «Вычислительные машины, комплексы, системы и сети»

КУРСОВАЯ РАБОТА

по дисциплине «Вычислительная математика»

Тема работы «Решение систем нелинейных уравнений методом Бройдена»

Воронеж 2009


РЕФЕРАТ

Пояснительная записка 26 с., 14 рисунка, 2 источника. Ключевые слова: МЕТОД БРОЙДЕНА, РЕШЕНИЕ СИСТЕМ МЕТОДОМ БРОЙДЕНА, РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

Объект исследования или разработки – решение систем нелинейных уравнений методом Бройдена.

Цель работы – создать программу, иллюстрирующую решение систем нелинейных уравнений методом Бройдена и исследовать результат ее работы.

Полученные результаты – листинг полученный программы, проверка соответствия найденных решений точным решениям заданной системы нелинейных уравнений.

Основные конструктивные, технологические и технико-эксплуатационные характеристики - персональная ЭВМ.


Содержание

 

Реферат

Введение

1. Алгоритм бройдена

1.1 Входные данные для алгоритма Бройдена

1.2 Содержание алгоритма Бройдена

1.3 Метод исключения Гаусса для решения СЛАУ

1.4 Вывод формулы пересчета Бройдена

2. Разработка программы и иследование результата ее работы

Заключение

Список литературы

Приложение


ВВЕДЕНИЕ

Необходимость в решении систем нелинейных уравнений возникает как самостоятельная задача при моделировании нелинейных объектов, а также как промежуточный этап при решении ряда других задач, например, при решении систем обыкновенных дифференциальных уравнений неявными методами или при решении нелинейных краевых задач.

В общем виде задача решения системы нелинейных уравнений ставится так: найти вектор , превращающий систему уравнений

,

где  - нелинейные функции от , в тождество.

Все численные методы решения нелинейного уравнения исходят из того, что решение либо единственно во всей области, либо требуемое решение лежит в известной области. При решении практических задач такая информация обычно поступает от постановщика задачи, который может примерно характеризовать область предполагаемого решения.

Для большинства практических задач отсутствует аналитическое выражение для функции , а значит, и для . В этом случае приходится прибегать к аппроксимации якобиана. Одним из способов такой аппроксимация является метод Бройдена [1].

В курсовой работе будет рассматриваться метод решения Бройдена для систем нелинейных уравнений.


1. АЛГОРИТМ БРОЙДЕНА.   1.1 Входные данные для алгоритма Бройдена

Входными данными для алгоритма Бройдена являются вектор начального решения, начальная матрица Якоби и заданная точность.

1.2 Содержание алгоритма Бройдена

Пусть необходимо решить систему уравнений  с начальным вектором . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Использование финансов для решения социальных проблем
Просмотров:72
Описание: СОДЕРЖАНИЕ Введение 1. Расходы государства на социальные нужды 1.1 Сущность расходов государства на социальные нужды 1.2 Группы расходов на социальные нужды 2. Финансовые методы повышения жизненного уро

Название:Применение теории решения изобретательских задач при создании новой техники
Просмотров:122
Описание: СОДЕРЖАНИЕ   ВВЕДЕНИЕ ПРИМЕНЕНИЕ ТЕОРИИ РЕШЕНИЯ ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ ПРИ СОЗДАНИИ НОВОЙ ТЕХНИКИ 1. Закон полноты частей системы 2. Закон «энергетической проводимости» системы 3. Закон согласования

Название:Исследование правового института судебного решения
Просмотров:75
Описание: Введение Судебное решение по гражданскому делу – институт, теоретической разработке которого в науке гражданского процессуального права уделялось серьезное внимание. Интерес, проявленный процессуальной

Название:Язык Paskal. Основные элементы языка. Структура программы
Просмотров:86
Описание: Содержание   Введение 1. Структура программы 2. Алфавит языка 3. Простейшие конструкции 4. Выражения 5. Типы данных 6. Операции Заключение Литература     Введение Тема реферата "Я

Название:Разработка программы при помощи языка программирования языка Delphi
Просмотров:79
Описание: Министерство образования и науки Украины Северодонецкое высшее профессиональное училищеКурсовая работа По дисциплине «Программирование и алгоритмические языки» Тема: Разработка программы при помощи яз

 
     

Вечно с вами © MaterStudiorum.ru