МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ
Кафедра
высшей математики.
Дисциплина «Математический анализ»
ОТЧЕТ
по курсовой работе
Тема
Решение военно-логической задачи по распределению ударной группы авиационного подразделения
г.Москва 2008г.
Словесная постановка задачи
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.
Таблица 1:
Количество ударных единиц
N1
Типы групповых целей
Количество АСП на 1 вертолете
n1
Вероятность поражения единичной цели 1 ракетой.
Р1i
Вероятность преодоления ПВО единичной цели.
Р2i
40 Танки 4 0,34 0,7 САУ 4 0,42 0,76 БТР 4 0,56 0,79
Таблица 2 :
Групповые цели
Количество единиц в группе
N2i
Количество средств поражения на единичной цели
n2i
Вероятность поражения одной ракетой одного вертолета
Р3i
Танки 20 8 0,3 САУ 40 6 0,24 БТР 60 4 0,21
Процесс математического моделирования прикладной задачи условно можно разбить на три этапа:
I этап: Словесная и математическая постановка исходной задачи.
1) Словесная постановка задачи.
2) Математическая постановка задачи.
3) Исследование математической задачи на корректность.
II этап: Разработка методов решения.
1) Разработка метода решения.
2) Обоснование выбранного метода.
III этап: Проведение расчетов и анализ полученных результатов.
Итак, согласно нашего разбиения переходим к пункту 1 первого этапа:
Исходя из словесной постановки задачи (стр.2) (исходные данные были взяты гипотетические). По исходным данным определим тип задачи которую нам необходимо решить. Поставленная задача может быть представлена в виде задачи на распределение сил и средств поражения по целям.
Для решения задачи об оптимальном распределении вертолетов по групповым целям воспользуемся методом ОПТИМИЗАЦИИ АДДИТИВНОЙ ЦЕЛЕВОЙ ФУНКЦИИ.
Аддитивная целевая функция, являясь суммой частных нелинейных целевых функций, используется для оптимального распределения сил и боевых средств по задачам или объектам удара, представляющим одиночные и групповые наземные или воздушные цели. Оптимизация аддитивной функции может реализоваться в форме аналитической модели на основе метода условного экстремума.
Далее переходим к пункту 2 первого этапа:
Математическая постановка задачи
Дадим математическую постановку задачи на следующем тактическом фоне. Имеется S объектов с важностями Ai(j=1…S), по которым планируется удар N однородными средствами поражения (вертолетами). Заданы вероятности поражения каждого из объектов одним боевым средством и вероятность преодоления их ПВО P2i(j=1…s). ............