MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Экономика -> Ряды распределения и аналитические группировки

Название:Ряды распределения и аналитические группировки
Просмотров:90
Раздел:Экономика
Ссылка:Скачать(38 KB)
Описание: Задача 2. Постройте ряд распределения студентов по успеваемости: 2, 3, 3, 4, 2, 5, 5, 3, 3, 4, 5, 4, 5, 5, 5, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4. Подсчитайте локальные и накопительные частоты. Постройте полигон и кумуляту распределения. Опре

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Задача 2. Постройте ряд распределения студентов по успеваемости: 2, 3, 3, 4, 2, 5, 5, 3, 3, 4, 5, 4, 5, 5, 5, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4. Подсчитайте локальные и накопительные частоты. Постройте полигон и кумуляту распределения. Определите моду, медиану, среднюю, дисперсию, среднее квадратическое отклонение, коэффициент вариации.

Решение:

Ряд распределения – это ряд чисел, в котором значение изучаемого признака (варианты), расположены в определенном порядке: либо в порядке возрастания, либо убывания. Наряду с вариантами ряд распределения включает и частоты – величины, показывающие сколько раз каждая варианта встречается в данной совокупности. Сумма частот равна объему совокупности. Таким образом, ряд распределения состоит из вариант (х) и частот (f)

В зависимости от прерывности или непрерывности варьирующего признака ряды распределения удобно представлять в виде двух разновидностей: дискретного и вариационного (интервального). Дискретный ряд представляет собой ряд прерывных чисел. Например, распределение студентов по успеваемости (табл. 1). При непрерывной вариации распределение признака называется интервальным. Частоты относятся ко всему интервалу.

В зависимости от вида ряда распределения по-разному можно изобразить их графически. Если ряд дискретный – строится полигон распределения. Величина признака откладывается на оси абсцисс, частоты – на оси ординат. Вершины ординат соединяются прямыми линиями. Гистограмма распределения отличается от полигона тем, что на оси абсцисс берутся не точки, а отрезки, изображающие интервал, т.е. гистограмма, строится на


Оценка (балл) Число студентов (частоты) Накопленные 2 2 2 3 8 10 4 12 22

5

8 30 Итого 30

В основе вариационного (интервального) ряда. По накопленным частотам строится кумулятивная кривая (кумулята).
Для определения средней арифметической надо сложить все варианты и полученную сумму разделить на число единиц, входящих в совокупность (объем совокупности). Средняя арифметическая бывает простая и взвешенная. Простая средняя используется тогда, когда каждая варианта встречается лишь один раз (1). Если каждая варианта встречается несколько раз, то следует подсчитать частоты и умножить (взвесить) каждую варианту на соответствующую частоту (2).

Простая средняя арифметическая х = (1)

Средняя арифметическая взвешенная х = (2)

Средний процент влажности найдём по формуле средней арифметической взвешенной:

==

При расчете средней арифметической для интервального ряда нужно сначала определить середины интервалов как полусуммы значений верхней и нижней границ интервала. При наличии интервалов, где <хоткрыты» верхняя или нижняя граница, величину интервала определяют по последующему или предыдущему интервалу.

Для характеристики рядов распределения кроме средней степенной применяются структурные средние: мода и медиана.

Мода – варианта, которая наиболее часто встречается в данной совокупности, т.е. варианта с наибольшей частотой. Мо=4

Медиана – варианта, находящаяся в середине ряда распределения.

Мода для дискретного ряда определяется просто и соответствует варианте с наибольшей частотой.

Медиану для дискретного определяют по накопленным частотам делением объема совокупности пополам: по таблице 1 – 30:2=15. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Моделирование динамики яркостной температуры земли методом инвариантного погружения и нейронных сетей
Просмотров:226
Описание: КУРСОВАЯ РАБОТА "МОДЕЛИРОВАНИЕ ДИНАМИКИ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ ЗЕМЛИ МЕТОДОМ ИНВАРИАНТНОГО ПОГРУЖЕНИЯ И НЕЙРОННЫХ СЕТЕЙ" Введение Необходимость усиления к

Название:Экономическое обоснование варианта перехода цеха предприятия на выпуск новой модификации изделия
Просмотров:118
Описание: Введение Машиностроительное предприятие в течение длительного времени специализировалось на производстве изделия А, используя при этом свои производственные мощности (по ведущей группе оборудования) на 100&n

Название:Непрерывность функции на интервале и на отрезке
Просмотров:299
Описание: Непрерывность функции на интервале и на отрезке   Определение 3.3 Пусть - некоторая функция, - её область определения и - некоторый (открытый) интервал (может быть, с и/или )7. Назовём функцию непрерывной на интер

Название:Ортогональные полиномы и кривые распределения вероятностей
Просмотров:145
Описание: Санкт-Петербургский государственный университет Факультет прикладной математики – процессов управления Кафедра математического моделирования энергетических систем Карпова Наталия А

Название:История формирования американского варианта английского языка
Просмотров:142
Описание: Оглавление Введение Глава 1. Ной Вебстер как создатель американского варианта английского языка Глава 2. Последователи революционных преобразований Ноя Вебстера в английском языке Глава 3. Преобразовани

 
     

Вечно с вами © MaterStudiorum.ru