MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Семейства решений с постоянной четной частью

Название:Семейства решений с постоянной четной частью
Просмотров:73
Раздел:Математика
Ссылка:Скачать(91 KB)
Описание: Министерство образования Республики Беларусь Учреждение образования Гомельский государственный университет имени Франциска СкориныКурсовая работа"Семейства решений с постоянной четной частью"Гомель,

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Министерство образования Республики Беларусь

Учреждение образования Гомельский государственный университет имени Франциска Скорины


Курсовая работа


"Семейства решений с постоянной четной частью"


Гомель, 2005


Реферат

В данной курсовой работе 17 листов. Работа состоит из пяти разделов. Ключевые слова: ДУ, решение, система, общее решение, четность, функция.

В работе содержится исследование семейства решений линейной системы. Выясняется связь семейства решений этой системы с её отражающей функцией и её свойствами. Устанавливаются условия, при которых линейная система имеет общее решение, четная часть которого не зависит от времени.

Библиография – 5 названий.


Содержание

Введение

1. Определение и свойства отражающей функции

2. Простейшая система

3. Система чет-нечет

4. Примеры систем, семейства решений которых имеют постоянную четную часть

5. Семейства решений с постоянной четной частью

Заключение

Литература


Введение

Основным инструментом нашего исследования является понятие «отражающей функции».

При изучении вопросов существования периодических решений дифференциальных систем и уравнений используются свойства симметричности (четность, нечетность и т.п.) как функций, задающих изучаемую систему, так и самих решений.

В данной работе мы будем изучать семейства решений с постоянной четной частью, когда четная часть будет представлена в виде константы.

Исследования с помощью отражающей функции позволяет получить новые результаты даже для уже хорошо изученных линейных систем.


1. Определение и свойства отражающей функции

Рассмотрим систему

, (1.1)

считая, что её правая часть непрерывна и имеет непрерывные частные производные по . Общее решение этой системы в форме Коши обозначим через . Через  обозначим интервал существования решения

Пусть

.

 

Определение: Отражающей функцией системы (1.1) назовем дифференцируемую функцию , определяемую формулой  (*) или формулами .

Для отражающей функции справедливы свойства:

1). Для любого решения , системы  верно тождество

;                                                    (1.2)

2). Для отображающей функции  любой системы выполнены тождества:

;                                                    (1.3)


3). Дифференцируемая функция  будет отражающей функцией системы (1.1) тогда и только тогда, когда она удовлетворяет уравнениям в частных производных

            (1.4)

и начальному условию

.                                         (1.5)

Уравнение (1.4) будем называть основным уравнением (основным соотношением) для отражающей функции.

► Свойство 1) следует непосредственно из определения (*). Для доказательства свойства 2) заметим, что согласно свойству 1) для любого решения  системы (1) верны тождества . Из этих тождеств в силу того, что через каждую точку  проходит некоторое решение  системы (1.1), и следуют тождества (1.3).

Приступим к доказательству свойства 3). Пусть  – отражающая функция системы (1.1). Тогда для неё верно тождество (1.2). Продифференцируем это тождество по  и воспользуемся тем, что  – решение системы (1.1), и самим тождеством (1.2). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru