Федеральное агентство по образованию РФ
ФГОУ СПО «Перевозский строительный колледж»
Курсовая работа
по дисциплине «Математические методы»
на тему «СМО с ограниченным временем ожидания. Замкнутые СМО»
Перевоз
2008
Содержание
Введение.......................................................................................................... 2
1. Основы теории массового обслуживания.................................................. 3
1.1 Понятие случайного процесса.................................................................. 3
1.2 Марковский случайный процесс.............................................................. 4
1.3 Потоки событий......................................................................................... 6
1.4 Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний......................................................................................................... 9
1.5 Задачи теории массового обслуживания............................................... 13
1.6 Классификация систем массового обслуживания.................................. 15
2. Системы массового обслуживания с ожиданием..................................... 16
2.1 Одноканальная СМО с ожиданием........................................................ 16
2.2 Многоканальная СМО с ожиданием...................................................... 25
3. Замкнутые СМО........................................................................................ 37
Решение задачи............................................................................................. 45
Заключение.................................................................................................... 50
Список литературы....................................................................................... 51
Введение
В данном курсе мы будем рассматривать различные системы массового обслуживания (СМО) и сети массового обслуживания (СеМО).
Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.
Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д. Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер. Заявка на решение некоторой задачи, поступающая в вычислительную систему, проходит последовательность этапов счета, обращения к внешним запоминающим устройствам и устройствам ввода-вывода. После выполнения некоторой последовательности таких этапов, число и продолжительность которых зависит от трудоемкости программы, заявка считается обслуженной и покидает вычислительную систему. Таким образом, вычислительную систему в целом можно представлять совокупностью СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы.
Совокупность взаимосвязанных СМО называется сетью массового обслуживания (стохастической сетью).
Для начала мы рассмотрим основы теории СМО, затем перейдем к ознакомлению в подробном содержании к СМО с ожиданием и замкнутым СМО. Также в курс включена практическая часть, в которой мы подробно познакомимся с тем, как применить теорию на практике.
1. Основы теории массового обслуживания
Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). ............