MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Системы линейных алгебраических уравнений

Название:Системы линейных алгебраических уравнений
Просмотров:110
Раздел:Математика
Ссылка:Скачать(133 KB)
Описание: Высшая математика Контрольная работа №1 Вариант 3   Задание №1   Дана система линейных алгебраических уравнений: Требуется: 1)  Записать матрицу коэффициентов (А) и свободных членов ();

Часть полного текста документа:


Высшая математика

Контрольная работа №1

Вариант 3

 


Задание №1

 

Дана система линейных алгебраических уравнений:

Требуется:

1)  Записать матрицу коэффициентов (А) и свободных членов ();

2)  Решить систему методом Гаусса и (в случае её невырожденности) Крамера.

Решение.

1)  Запишем матрицу коэффициентов:

Матрица свободных членов:

2)  Решим систему методом Гаусса.

Запишем расширенную матрицу системы и преобразуем её методом Гаусса (приведём к ступенчатому виду с помощью элементарных преобразований строк):


Шаг 1: из строки 2 вычитаем строку 1, умноженную на 2;  из строки 3 вычитаем строку 1;

Шаг 2: из строки 3 вычитаем строку 2;

Получили вырожденную систему уравнений, так как если записать уравнение по последней строке преобразованной матрицы, получим 0 = -1, что неверно. Значит, заданная система не имеет решений.

Ответ: решения системы не существует.

 

Задание №2

 

 Решить матричное уравнение:

АXBт + m AB = С

, и , m=2.

 

Решение.

Для того, чтобы решить заданное матричное уравнение, перенесём все известные слагаемые в правую часть, а неизвестные оставим в левой:

Затем обе части уравнения домножим справа на матрицу, обратную к транспонированной матрице В, и домножим слева на матрицу, обратную к матрице А, получим:

где Е – единичная матрица.

Для того, чтобы найти Х, найдём все необходимые матрицы, затем перемножим их.


 (*)

Запишем транспонированную матрицу Bт, для чего на место столбцов запишем соответствующие строки:

Вычислим произведение матриц А и В, затем умножим полученную матрицу на m=2:

Вычтем полученную матрицу из матрицы С:

Теперь найдём матрицы .


Подставляем все найденные матрицы в уравнение (*)

 

Ответ: .

Задание №3

 

Даны векторы:

, и .

 

Требуется:

1)  – найти длину вектора ;

2)  - вычислить скалярное произведение ;

3)  – найти координаты вектора ;

4)  – установить, является ли система векторов ,, линейно зависимой.

Решение.

1)  Длина (модуль) вектора  находится по формуле:

 

Значит, длина вектора равна:

 

2)  Скалярное произведение векторов  и  ищется следующим образом:

Подставляем координаты векторов  и .

3)  Сложение и вычитание векторов заключается в поэлементном соответственно сложении или вычитании их координат. Чтобы умножить вектор на число, необходимо умножить каждую координату вектора на это число. Поэтому:


Для того, чтобы определить, является ли система из трёх векторов, линейно независимой, достаточно вычислить определитель третьего порядка, составленный из координат этих векторов. Если определитель окажется равным 0, значит, система векторов линейно зависима; если определитель будет отличен от 0 – система векторов линейно независима. Координаты векторов будут строками определителя. Вычислим определитель, разложив его по первому столбцу.

Так как определитель не равен 0, значит, система векторов линейно независима.

Ответ: 1) ; 2) ; 3) ; 4) система векторов линейно независима.

 

Задание №4

 

Даны координаты точек:

Требуется:

1)  найти общее уравнение прямой , проходящей через точки А1 и А2;

2)  найти уравнение прямой , проходящей через точку  параллельно прямой ;

3)  найти расстояние между прямыми и ;

4)  написать уравнение прямой, проходящей через точку  перпендикулярно прямой  и найти координаты точки пересечения этих прямых;

5)  построить схематический чертеж.

Решение.

1)  Сначала запишем уравнение прямой, проходящей через две точки М1(x1,y1) и М2(x2,y2):

 

Подставляем координаты точек А1 и А2 и получаем:

Преобразуем полученное уравнение и получим общее уравнение прямой :

2)  Запишем уравнение прямой  в виде :

Если прямые параллельны, то они имеют одинаковый коэффициент k. Значит прямая  имеет вид . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:127
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:126
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

Название:Формула Бернулли, Пуассона. Коэффициент корреляции. Уравнение регрессии
Просмотров:170
Описание: Контрольная работа ТЕОРИЯ ВЕРОЯТНОСТЕЙ 1. В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из в

Название:Система координат канви
Просмотров:104
Описание: Зміст Вступ Розділ 1. Теоретична частина 1.1 Компонент Image і деякі його властивості 1.2 Вивід зображень за допомогою пікселів 1.3 Збереження конфігурації в файлах .ini Розділ 2. Практична частина 2.1 Код гри

Название:Социологический анализ семьи в единстве структурных и динамических координат
Просмотров:67
Описание: Содержание 1. Социологический анализ семьи в единстве структурных и динамических координат. Семья как социальный институт и как социальная группа 2. Типология семейных структур и их основные разновидности.

 
     

Вечно с вами © MaterStudiorum.ru