MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Собственные вектора и собственные значения линейного оператора

Название:Собственные вектора и собственные значения линейного оператора
Просмотров:134
Раздел:Математика
Ссылка:Скачать(115 KB)
Описание: РЕФЕРАТ   "Собственные вектора и собственные значения линейного оператора" Понятие собственные векторы и собственные значения   Перед тем как определить пон

Часть полного текста документа:

РЕФЕРАТ

 

"Собственные вектора и собственные значения линейного оператора"


Понятие собственные векторы и собственные значения

 

Перед тем как определить понятие собственные вектора, покажем его на наглядном примере. На рисунке 1, красным цветом обозначен собственный вектор. Он, в отличие от синего, при деформации не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению λ = 1. Любой вектор, параллельный красному вектору, также будет собственным, соответствующим тому же собственному значению. Множество всех таких векторов (вместе с нулевым) образует собственное подпространство.

Рис. 1


Определение. Ненулевой вектор x называется собственным вектором линейного оператора , если найдется такое число λ, называемое собственным значением линейного оператора, что

 

(x) = λ·x (1)

Равенство (1) означает, что вектор x, подвергнутый действию линейного оператора, умножается на число λ. Появляется коллинеарный вектор. Среди векторов линейного векторного пространства могут существовать такие, воздействие оператора на которые переводит эти векторы в коллинеарные самим себе. Если на таких векторах построить базис, преобразования линейной алгебры значительно упростятся.

Не всякий линейный оператор обладает собственными векторами. Например, в геометрической плоскости R2 оператор поворота на угол, не кратный π, не имеет ни одного собственного вектора, поскольку ни один ненулевой вектор после поворота не останется коллинеарным самому себе.

Решим задачу нахождения собственных векторов оператора. Запишем равенство (1) в матричной форме:

 

P·X = λ·X

Преобразуем матричное уравнение:

 

P·X – λ·X = 0 или (P – λ·E) X =0

Матричное уравнение всегда имеет нулевое решение:


X=0=

Для существования ненулевых решений ранг матрицы коэффициентов должен быть меньше числа переменных r<n, т.е. число линейно независимых уравнений должно быть меньше числа переменных. В этом случае должно быть выполнено условие

 

|P – λ·E|=0 (2)

Расписав уравнение (2) относительно λ подробнее, получим

|P – λ·E|=

Раскрыв определитель, получим уравнение n-й степени относительно λ:

Которое называется характеристическим уравнением оператора . Корни уравнения называются характеристическими или собственными числами оператора. Множество всех собственных чисел оператора  называется спектром этого оператора. Многочлен левой части уравнения называется характеристическим многочленом.

Решив характеристическое уравнение, получаем собственные числа λ1, λ2, …, λn. Для каждого найденного собственного значения λi найдем ненулевые векторы ядра оператора P – λi E. Именно они будут собственными векторами, соответствующими собственному значению λi. Другими словами, необходимо решить однородную систему уравнений (P – λi E) X=0. Ее общее решение дает всю совокупность собственных векторов, отвечающих λi.

Общее решение однородной системы, как известно, структурировано. Оно представляет собой линейную комбинацию фундаментального набора линейно независимых решений (векторов). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Решение задач линейного программирования симплекс-методом
Просмотров:154
Описание: Содержание   Введение 1. Теоретический материал 1.1 Математическая формулировка задачи линейного программирования 1.2 Решение задач линейного программирования симплекс-методом 2. Постановка задачи 3.

Название:Линейно-функциональная структура управления
Просмотров:62
Описание: 1. Понятие и сущность линейно-функциональной структуры Механизм управления организации приводится в действия с помощью разработанной структуры управления. Линейно-функциональная - структура управления, в

Название:Операторы фондового рынка
Просмотров:170
Описание: СОДЕРЖАНИЕВведение  ................................................................................................................3 1. Теоретические и эволюционные аспекты фондового рынка в России  5 2. Методические основы операторов фондового рынка  ..............

Название:Некоторые линейные операторы
Просмотров:147
Описание: Содержание Введение §1. Определение линейного оператора. Примеры §2. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора §3. Обратный оператор. Спект

Название:Использование среды MatLAB для решения линейной программы
Просмотров:157
Описание: СОДЕРЖАНИЕ Введение 1. Постановка задачи линейного программирования 1.1 Формы задачи линейного программирования 1.2 Переход к канонической форме 2. Симплекс-метод 2.1 Теоретические основы симплекс-метод

 
     

Вечно с вами © MaterStudiorum.ru