MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Солитоны в воде

Название:Солитоны в воде
Просмотров:142
Раздел:Математика
Ссылка:Скачать(46 KB)
Описание:Нелинейность и солитоны. Возбуждение солитонов бегущими внешними волнами.

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Солитоны в воде Е. Н. Пелиновский
    Кто из нас, сидя у воды и бросая в нее камешки, не любовался картиной разбегающихся волн! Но мало кто задумывался, почему высота волн быстро убывает с расстоянием r от места падения камня. Можно назвать сразу две главные причины, ведущие к такому ослаблению волн. Первая связана с расходимостью круговых волн: сохранение потока энергии ведет к падению амплитуды (высоты) волны по закону H~r-1/2. Другой эффект менее тривиален: скорость волн на воде зависит от их длины (у более длинных волн и скорость больше); в результате, как нам кажется, с расстоянием волны становятся более длинными. И хотя каждый, кто бросал камень в воду, наблюдал этот эффект, в школьных учебниках его традиционно описывают на примере разложения обычного света, проходящего через призму, на его цветовые составляющие (спектр).
    И в том и в другом случае мы имеем дело с дисперсией волны, когда начальное возмущение, образуемое в месте бросания камня, "растаскивается" на спектральные компоненты. Каждая из волн бежит со своей скоростью, и вперед выходят более длинные. Этот эффект может быть пояснен на примере излюбленной школьной задачи, когда путешественники А и Б выходят из одного пункта с разными скоростями в одном направлении и расстояние между ними возрастает линейно со временем. Переходя теперь к большому числу таких путешественников, скорости которых различны, легко понять, что "плотность" путешественников (число людей на 1 м) падает с расстоянием от исходного пункта. Аналогичные оценки для волн, исходя из закона сохранения энергии, также приводят к зависимости H~r -1/2. Совместное воздействие этих двух причин ведет к суммарному ослаблению высоты волны (вследствие дисперсии и расходимости) по закону H~r-1. Благодаря быстрому ослаблению высоты волны происходит локализация возмущений на воде (иначе бы штормовые волны, зародившись в одном месте, оставались опасными для всего океана).
    Однако это упрощенная картина, в которую не вошло достаточно много исключений. Например, гигантские морские волны, зародившиеся при землетрясении в Чили 22 мая 1960 г. (такие волны называют цунами), пересекли весь Тихий океан (примерно 17 тыс. км) и накатились на побережье Дальнего Востока, где высота их достигала 7 м.
    Об эффектах, которые приводят к аномально долгому существованию волн на воде (и в воде), и будет рассказано в этой статье. Нелинейность и солитоны
    Какие же факторы способны воспрепятствовать быстрому ослаблению волнового поля? Во-первых, ограничение распространения волны только одной пространственной координатой, чтобы ликвидировать ее расходимость в виде круговых волн. Простейший пример - распространение волны в реке. В открытом океане естественными каналами (волноводами) служат подводные хребты и течения струйного типа (например, Гольфстрим). Роль таких волноводов была понята давно. Однако они не могут препятствовать эффектам дисперсии, и, следовательно, волна все равно ослабляется (хотя и не так быстро) и ее длина возрастает.
    Другим фактором, о котором здесь нужно сказать, является нелинейность. Под этим понятием мы будем подразумевать зависимость скорости распространения волны от ее амплитуды. Во всех линейных моделях скорость распространения определяется характеристиками среды (например, для волн на воде максимальная скорость их распространения есть
    
    где h - глубина бассейна и g - ускорение свободного падения), но не амплитудой волны. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Решение задач линейного программирования симплекс-методом
Просмотров:251
Описание: Содержание   Введение 1. Теоретический материал 1.1 Математическая формулировка задачи линейного программирования 1.2 Решение задач линейного программирования симплекс-методом 2. Постановка задачи 3.

Название:Линейно-функциональная структура управления
Просмотров:154
Описание: 1. Понятие и сущность линейно-функциональной структуры Механизм управления организации приводится в действия с помощью разработанной структуры управления. Линейно-функциональная - структура управления, в

Название:Использование среды MatLAB для решения линейной программы
Просмотров:253
Описание: СОДЕРЖАНИЕ Введение 1. Постановка задачи линейного программирования 1.1 Формы задачи линейного программирования 1.2 Переход к канонической форме 2. Симплекс-метод 2.1 Теоретические основы симплекс-метод

 
     

Вечно с вами © MaterStudiorum.ru

.