MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Физика -> Теорема Остроградського-Гаусса, потенціальний характер електростатичного поля та діелектрики в електричному полі

Название:Теорема Остроградського-Гаусса, потенціальний характер електростатичного поля та діелектрики в електричному полі
Просмотров:69
Раздел:Физика
Ссылка:Скачать(468 KB)
Описание: План лекції з навчальної дисципліни Ф І З И К А   Тема: "ТЕОРЕМА ОСТРОГРАДСЬКОГО-ГАУССА" Вступ Обчислення напруженості поля системи електричних зарядів з допомогою

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

План

лекції з навчальної дисципліни

Ф І З И К А

 

Тема: "ТЕОРЕМА ОСТРОГРАДСЬКОГО-ГАУССА"


Вступ

Обчислення напруженості поля системи електричних зарядів з допомогою принципу суперпозиції електростатичних полів можливо значно спростити, використовуючи вивчену німецьким ученим К. Гауссом теорему, що визначає потік вектора напруженості електричного поля через довільну замкнену поверхню (загальне визначення потоку для будь-якого вектора було дано Полтавським математиком Остроградським).

На основі теореми розраховується електричне поле для заряджених тіл, що мають симетрію.

 


Поняття потоку вектора електричного зміщення

Нехай в однорідному електричному полі розміщена площина DS так, що вектор зміщення  утворює з нормаллю  кут a (рис. 1).

Рис. 1

Потоком вектора зміщення називається добуток нормальної складової цього вектора (поверхні) і величини площадки

але , тому маємо  або .

Якщо поле неоднорідне, то поверхнею розбивають на нескінченно малі ділянки.

Тоді .

А потік через всю довільну поверхню визначиться


Теорема Гауса-Остроградського і її застосування для розрахунку електричних полів

Спочатку розрахуємо потік вектора напруженості поля точкового заряду q через сферичну поверхню радіусом r.

Рис. 2

Потік вважається додатнім; якщо лінії напруженості виходять із поверхності і від’ємним для ліній, що входить у поверхню. Напруженість поля в точках сферичної поверхні стала по величині дорівнює:

Вектори напруженості поля у всіх точках співпадають з напрямком нормалі.

Тому потік вектора напруженості через сферичну поверхню дорівнює

Підставимо значення Е і S.

;

Таким чином потік вектора напруженості поля точкового заряду q через сферичну поверхню пропорційний q.

Цей висновок узагальнюється теоремою Гауса – Остроградського на будь-яку систему зарядів, оточених довільно замкненою поверхнею.

Теорема. Потік вектора електричної напруженості через будь-яку замкнену поверхню пропорційний алгебраїчній сумі зарядів, охоплюваних цією поверхнею.

Наприклад. Заряди , оточені довільною замкнутою поверхнею.

Рис. 3

Як бачимо з рисунку 3 заряди  і  створюють додатки потоку, а  від’ємний потік через замкнуту поверхню: тому повний потік вектора напруженості через цю поверхню дорівнює

.


Заряд , що знаходиться поза замкнутою поверхнею потоку через неї не створює.

У загальному випадку теорема Остроградського – Гауса запишеться:

Вектор зміщення в точках сферичної поверхні має вираз:

,

а його потік через цю поверхню дорівнює:

; .

Для вектора зміщення теорема Гауса – Остроградського формулюється: потік вектора зміщення через будь-яку замкнуту поверхню дорівнює алгебраїчній сумі зарядів, охоплених цією поверхнею:

В системі СІ потік вектора зміщення вимірюється в Кл.

Із теореми Гауса маємо ряд наслідків:

1) Лінії напруженості починаються на позитивних і закінчуються на негативних зарядах.

2) Повний потік вектора зміщення через поверхню, що охоплює систему зарядів алгебраїчна сума яких дорівнює нулю.

3) Якщо замкнута поверхня не охоплює електричні заряди, то потік через неї дорівнює нулю, число ліній напруженості, що входять дорівнює числу ліній напруженості, що виходять:

а) Поле рівномірно зарядженої нескінченої пластини.

Хай пластинка заряджена позитивно з поверхневою густиною

Із симетрії поля випливає, що лінії напруженості перпендикулярні до пластинки (рис. 4).

Рис. 4

Вибираємо довільно точку А і симетричну їй . Проводимо циліндричну поверхню так, щоб в основах її знаходились точки А і , а лінії напруженості були паралельні твірним.

Тоді потік через бокову поверхню дорівнюватиме О. Повний потік буде дорівнювати сумі потоків через основи

Заряд, що охоплюється циліндричною поверхнею дорівнює s×DS.

Використовуючи теорему Гауса одержимо:


,

.

Напруженість поля в кожній точці простору незалежно від відстані від рівномірно зарядженої нескінченної пластини однакова, електричне поле – однорідне.

Б) Напруженість поля 2-х паралельних різнойменно заряджених нескінчених пластин з однаковою поверхневою густиною зарядів s (принцип суперпозиції):

Рис. 5

В) Поле зарядженої сферичної поверхні радіуса R і зарядом q має центральну симетрію (рис. 6).

 

Рис. 6


Лінії напруженості радіальні. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Методи оцінки потенціалу підприємства
Просмотров:80
Описание: Тема 1. Сутнісна характеристика потенціалу підприємства   1. Сутністно змістова еволюція терміну “потенціал” Термін потенціал походить з латинської мови і означає - скриті можливості, у виробничій прак

Название:Експортний потенціал регіонів України
Просмотров:191
Описание: ЕКСПОРТНИЙ ПОТЕНЦІАЛ РЕГІОНІВ УКРАЇНИ Вступ Активна зовнішньоекономічна діяльність виступає одним з основних факторів ринкової трансформації економіки, підвищення її

Название:Ефективність наукових досліджень і використання інноваційного потенціалу вищого навчального закладу
Просмотров:113
Описание: МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Одеський державний економічний університет КоРОЛЬОВА ТЕТЯНА СЕРГІївна   УДК: 378.1:001(003)Ефективність наукових досліджень і використання інноваційного поте

Название:Економічний потенціал Індії
Просмотров:156
Описание: Економічний потенціал Індії     Однією з причин цього є той факт, що індійську валюту занижують з метою підвищення конкурентоспроможності індійських товарів на іноземних ринках. Потрібно відзначити:

Название:Природний рекреаційний потенціал Росії
Просмотров:126
Описание: Територія та географічне положення. Росія розташована одночасно у двох частинах світу: 1/3 - у Східній Європі, а 2/3 - у Північній Азії. Офіційна назва - Російська Федерація. До складу держави входять також Калінінград

 
     

Вечно с вами © MaterStudiorum.ru