Содержание
Задание 1
Задание 2
Задание 3
Задание 4
Задание 5
Задание 6
Список используемой литературы
Задание 1 Найти общее решение дифференциального уравнения первого порядка:
.
Решение:
Преобразуем уравнение и разделяя переменные, получим уравнение с разделенными переменными:
Интегрируем его и получаем общее решение данного уравнения
Ответ: Общее решение данного уравнения
Задание 2 Найти общее решение дифференциального уравнения первого порядка:
.
Решение:
Вводим замену
→
Так как одну из вспомогательных функций можно взять произвольно, то выберем в качестве какой-нибудь частный интеграл уравнения . Тогда для отыскания получим уравнение . Итак, имеем систему двух уравнений:
Далее
Проверка:
верное тождество. Ч. т.д.
Ответ:
Задание 3 Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям:
,
Решение:
Общее решение данного уравнения
ищется по схеме:
Находим общее решение однородного уравнения. Составим характеристическое уравнение
и
Общее решение имеет вид:
,
где
Находим частное решение . Правая часть уравнения имеет специальный вид. Ищем решение
, т.е.
Найдем производные первого и второго порядков этой функции.
Т.о. частное решение
Общее решение
Используя данные начальных условий, вычислим коэффициенты
Получим систему двух уравнений:
→
Искомое частное решение:
Ответ:
Задание 4 В читальном зале имеется 6 учебников по теории вероятностей, из которых 3 в мягком переплете. Библиотекарь взял 2 учебника. Найти вероятность того, что оба учебника в мягком переплете.
Решение:
Пусть имеется множество N элементов, из которых M элементов обладают некоторым признаком A. Извлекается случайным образом без возвращения n элементов. Вероятность события, что из m элементов обладают признаком А определяется по формуле:
(N=6, M=3, n=2, m=2)
Ответ:
Задание 5 Дана вероятность появления события A в каждом из независимых испытаний. Найти вероятность того, что в этих испытаниях событие A появится не менее и не более раз.
Решение:
Применим интегральную формулу Муавра-Лапласа
Где
и
Ф (x) - функция Лапласа , обладает свойствами
10. - нечетная, т.е.
20. При , значения функции представлены таблицей (табулированы) для
Так
Ответ:
Задание 6 Задан закон распределения дискретной случайной величины X (в первой строке указаны возможные значения величины X, во второй строке даны вероятности p этих значение).
Xi
8 4 6 5
pi
0,1 0,3 0,2 0,4
Найти:
1) найти математическое ожидание ,
2) дисперсию ;
3) среднее квадратичное отклонение .
Математическое ожидание (ожидаемое среднее значение случайной величины):
Дисперсия (мера рассеяния значений случайной величины Х от среднего значения а):
.
Второй способ вычисления дисперсии:
где
.
Среднее квадратичное отклонение (характеристика рассеяния в единицах признака Х):
→
Ответ:
Математическое ожидание
Дисперсия
Среднее квадратичное отклонение
Задание 7
Случайные отклонения размера детали от номинала распределены нормально. ............