MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Теория вероятности

Название:Теория вероятности
Просмотров:72
Раздел:Математика
Ссылка:Скачать(56 KB)
Описание: Содержание   Введение 1. Вероятность как событие 2. Вероятность и информация 3. Аксиомы теории вероятности Заключение Список литературы Введение Каждый эксперимент заканчивается каким-то опр

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Содержание

 

Введение

1. Вероятность как событие

2. Вероятность и информация

3. Аксиомы теории вероятности

Заключение

Список литературы


Введение

Каждый эксперимент заканчивается каким-то определенным результатом, который не всегда возможно заранее предугадать. Для того, чтобы формально описать некоторый эксперимент, нужно указать все возможные варианты результатов, которыми этот эксперимент может закончиться. В теории вероятностей такие результаты называются исходами. Множество W всех возможных исходов эксперимента называется пространством элементарных исходов. Предполагается, что эксперимент может закончиться одним и только одним элементарным исходом. В наиболее простом случае все эти исходы можно перечислить:

W = íw1 , w2, ... wný, или W= íw1, w2 , ...ý.

Такое пространство элементарных исходов называется дискретным.

Простейшим пространством элементарных исходов является такое пространство, в котором все указанные исходы рассматриваемого эксперимента:

1)         равновозможны;

2)         взаимно несовместны (т.е. в результате эксперимента может произойти один и только один из указанных исходов),

3)         все исходы образуют полную группу событий (т.е. никакие другие исходы, кроме перечисленных, не могут произойти).

Такое пространство конечно и называется пространством равновозможных исходов (или симметричным пространством).

ПРИМЕР 1. При бросании симметричной монеты возможны два исхода – выпадение решки или герба. Они удовлетворяют всем трем указанным выше условиям и потому в этом случае пространство элементарных исходов представляется так (здесь буквами Р и Г обозначены решка и герб соответственно):

ПРИМЕР 2. При одновременном бросании двух монет исходы представляют собой упорядоченные пары, состоящих из символов Р и Г. Первый элемент этой пары – результат, выпавший на первой монете, второй элемент – результат на второй монете. Очевидно, что таких пар – четыре:

ПРИМЕР 3. В случае бросания игральной кости может выпасть любое из чисел 1, 2, 3, 4, 5, 6. Поэтому пространство элементарных исходов

ПРИМЕР 4. При одновременном бросании двух игральных костей элементарные исходы представляют собой пары (x, y), где x – число очков, выпавшее на первой кости, а y – число очков на второй кости. Всего таких пар – 36:


1. Вероятность как событие

В дискретном пространстве вероятность каждого элементарного исхода считается заданной и обозначается Р(wi), или просто рi , причем всегда

1)   рi ³ 0

2)    (или ),

3)  

т.е. сумма (конечная или бесконечная) вероятностей всех элементарных исходов равна единице. Элементарные исходы мы называем элементарным событием.

Событием  называется любое подмножество, состоящее из элементарных исходов пространства элементарных событий W. Говорят, что «событие А произошло», если эксперимент закончился одним из элементарных исходов wiÎА.

Вероятностью события А называется сумма вероятностей всех элементарных исходов, входящих в А, то есть Р(А)=. Из этого определения вероятности события следует, что всегда 0 £ Р(А) £ 1.

В случае равновозможных исходов вероятность элементарного события А определяется формулой

,

где  – число элементов во множестве W, которое обычно называется «общее число исходов», а  – число элементов во множестве A, называемое «числом благоприятствующих исходов».

Событие `А, состоящее из всех элементарных исходов, не входящих в А, называется противоположным событием к событию А. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Основные элементы методологии государственной кадровой политики
Просмотров:99
Описание:   Основные элементы методологии государственной кадровой политики Содержание 1. Методологические основы государственной кадровой политики 1.1 Понятие и методологичес

Название:Понятие и особенности аграрных правоотношений, их элементы
Просмотров:84
Описание: Понятие и особенности аграрных правоотношений, их элементы   Нормы аграрного права, как и любые другие правовые нормы, вводят для того, чтобы определенным образом урегулировать общественные отношения суб

Название:Язык Paskal. Основные элементы языка. Структура программы
Просмотров:79
Описание: Содержание   Введение 1. Структура программы 2. Алфавит языка 3. Простейшие конструкции 4. Выражения 5. Типы данных 6. Операции Заключение Литература     Введение Тема реферата "Я

Название:Элементы теории вероятностей. Случайные события
Просмотров:154
Описание: Элементы теории вероятностей. Случайные события   Цель изучения - развить навыки составления и анализа математических моделей несложных задач прикладного характера, связанных со случайными явлениями, нау

Название:Элементы тензороного исчисления
Просмотров:139
Описание: Содержание Введение §1. Линейные преобразования §2. Индексные обозначения §3. Общее определение тензоров §4. Скалярное произведение и метрический тензор §5. Действия с тензорами §6. Поднятие и опускани

 
     

Вечно с вами © MaterStudiorum.ru