Контрольная работа
по дисциплине: Теория вероятностей
2009г.
Контрольная работа № 1
Вариант 1.
Задача № 1.
Условие:
Из 10 изделий, среди которых 4 бракованные, извлекают 3. Найти вероятность того, что среди них одно бракованное.
Решение:
Число N всех равновероятных исходов испытания равно числу способов, которыми можно из 10 деталей вынуть три, т.е. числу сочетаний из 10 элементов по 3:
По условию задачи из трех извлеченных изделий одно бракованное, а два годные. Таким образом mA:
Найдем вероятность события, при котором из 3 извлеченных наугад деталей одна окажется бракованной:
Ответ: вероятность события, при котором из 3 извлеченных наугад деталей одна окажется бракованной равна 0,5
Задача № 2
Условие:
Известны вероятности независимых событий А, В и С:
Р (А) = 0,5; Р (В) = 0,4; Р (С) = 0,6.
Определить вероятность того, что а) произойдет по крайней мере одно из этих событий, б) произойдет не более 2 событий.
Решение:
а) Для того чтобы найти вероятность того, что произойдет хотя бы 1 событие, найдем вероятность того, что ни одно событие не произойдет (обозначим эту вероятность P0). Так как события независимы по условию, вероятность P0 равна произведению вероятностей того, что не произойдет каждое отдельное событие.
Таким образом, вероятность того, что не произойдет:
событие А: А0 = 1 - 0,5 = 0,5
событие В: В0 = 1 - 0,4 = 0,6
событие С: С0 = 1 - 0,6 - 0,4
Воспользуемся правилом умножения вероятностей и получим вероятность того, что ни одно событие не произойдет:
P0= А0*В0*С0 = 0,5*0,6*0,4 = 0,12
Ситуация, при которой не произойдет ни одно событие, и ситуация, при которой произойдет хотя бы одно событие, образуют полную систему событий. Сумма вероятностей этих событий равна единице. Поэтому искомая вероятность P удовлетворяет уравнению:
P + P0 = 1, откуда следует, что
P = 1 - P0 = 1 - 0,12 = 0,88.
б) Для того, чтобы найти вероятность того, что произойдет не более 2 событий, найдем вероятность того, что произойдут все три события, и обозначим как Р1:
Р1 = А*В*С = 0,5*0,4,*0,6 = 0,12
Ситуация, при которой произойдут все 3 события, и ситуация, при которой произойдет не более 2 событий (от 0 до 2), составляют полную систему событий. Сумма вероятностей этих событий равна единице. Поэтому искомая вероятность P удовлетворяет уравнению:
P + Р1 = 1, откуда следует, что
P = 1 - Р1 = 1 - 0,12 = 0,88.
Ответ:
а) вероятность того, что произойдет по крайней мере одно событие, равна 0,88
б) вероятность того, что произойдет не более двух событий, равна 0,88
Задача № 3
Условие:
Вероятности попадания в цель: первого стрелка - 0,6; второго - 0,7; третьего - 0,8. Найти вероятность хотя бы одного попадания в цель при одновременном выстреле всех трех.
Решение:
Для того чтобы найти вероятность попадания в цель хотя бы 1 стрелка, найдем вероятность того, что ни один из стрелков не попадет в цель (обозначим эту вероятность через P0). Так как попадания различных стрелков в цель следует считать независимыми событиями, вероятность P0 равна произведению вероятностей того, что промажет каждый из стрелков.
Событие, состоящее в том, что некоторый стрелок попадет в цель, и событие, состоящее в том, что он промажет, составляют полную систему событий. ............