Завдання 1
В ящику 20 куль: 8 зелених і 12 синіх. З ящика навмання виймають одну кулю. Визначити ймовірність того, що ця куля:
а) зелена;
б) синя.
Розв’язок:
а) Позначимо за подію А ={вибрана куля - зелена} Тоді за означенням класичної імовірності імовірність події А дорівнюватиме відношенню кількості сприятливих подій до загальної кількості можливих подій. Кількість сприятливих подій - 8 (тому, що 8 зелених куль в ящику), загальна кількість можливих - 20 (тому, що загальна кількість кульок - 20).
- ймовірність того що вийнята куля - зелена
б) Позначимо за подію В ={вибрана куля синя} Тоді за означенням класичної імовірності імовірність події В дорівнюватиме відношенню кількості сприятливих подій до загальної кількості можливих подій. Кількість сприятливих подій - 12 (тому, що 12 синіх куль в ящику), загальна кількість можливих - 20 (тому, що загальна кількість кульок - 20).
- ймовірність того що вийнята куля - синя
Завдання 2
Імовірність несплати податків у кожного з n підприємців становить р. Визначити ймовірність того, що не сплатять податки не менше m1 і не більше m2 підприємців.
n=500; p=0,1; m1= 40; m2 =250.
Розв’язок:
q=1-p=0,9
За інтегральною теоремою Мавра-Лапласа, маємо:
Завдання 3
Задано ряд розподілу дробового попиту на певний продукт Х. Знайти числові характеристики цієї дискретної випадкової величини:
а) математичне сподівання М (Х);
б) дисперсію D (X);
в) середнє квадратичне відхилення σХ
Х 10 20 30 40 50 р 0,1 0,15 0,42 0,25 0,08
Розв’язок:
М (Х) = 0,1*10 + 20*0,15 + 30*0,42 + 40*0,25 + 50*0,08 = 1+3+12,6+10+4 = 30,6; - математичне сподівання
М (Х2) =936,36
Х2 100 400 900 1600 2500 р 0,1 0,15 0,42 0,25 0,08
М (Х2) = 0,1*100+400*0,15+900*0,42+1600*0,25+2500*0,08=1048
Dx= М (Х2) - М (Х2) =1048-936.36=111.64 - дисперсія
σХ = - середнє квадратичне відхилення
Завдання 4
Знаючи, що випадкова величина Х підпорядковується біноміальному закону розподілу з параметрами n, p записати ряд розподілу цієї величини і знайти основні числові характеристики:
а) математичне сподівання М (Х);
б) дисперсію D (X);
в) середнє квадратичне відхилення σХ
n=1; p=0,2
Розв’язок:
q=1-p=1-0,2=0,8
М (Х) =np=1*0.2=0.2 - математичне сподівання
D (X) =npq=4*0.2*0.8=0.64- дисперсія
σХ = - середнє квадратичне відхилення
Завдання 5
Побудувати графік щільності розподілу неперервної випадкової величини Х, яка має нормальний закон розподілу з математичним сподіванням М (Х) =а і проходить через задані точки
a)
а=3.
x 1 2 4 5 f (x) 0.05 0.24 0.24 0.05
г)
а=1.
X -2 -1 3 4 f (x) 0.075 0.088 0.088 0.075
Завдання 6
Задано вибірку, яка характеризує місячний прибуток підприємців (у тис грн.):
*Скласти варіаційний ряд вибірки.
*Побудувати гістограму та полігон частот, розбивши інтервал на чотири-шість рівних підінтервалів.
*Обчислити моду, медіану, середнє арифметичне, дисперсію варіаційного ряду:
6, 10, 12, 11, 11, 14, 6, 8, 12, 10, 14, 8, 9, 11, 7, 7, 12, 10, 13,6.
Розв’язання:
Скласти варіаційний ряд вибірки.
Оскільки вибірка складається з 20 значень, то обсяг вибірки n=20.
Побудуємо варіаційний ряд вибірки:
6, 6, 6, 7, 7, 8, 8, 9,10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14.
2. Побудувати гістограму та полігон частот, розбивши інтервал на чотири-шість рівних підінтервалів.
У даній вибірці 9 різних варіант, запишемо їх частоти у вигляді статистичного розподілу:
Таблиця 1
хі 6 7 8 9 10 11 12 13 14
nі 3 2 2 1 3 3 3 1 2
Рис.1. ............