КОНТРОЛЬНА РОБОТА
з дисципліни
"Теорія ймовірностей та математична статистика”
Завдання 1
Два стрільці незалежно один від одного роблять по одному пострілу по мішені. Ймовірність влучення першого – 0,8, а другого – 0,4. Відомо, що є одне влучення. Знайти ймовірність того, що влучив другий стрілець.
Розв’язання
Позначимо випадкові події:
Х1:”влучив перший стрілець”,
Х2:”влучив другий стрілець”,
Y: “є одне влучення у мішень”,
Z: “влучив другий, а перший не влучив”
Апріорна ймовірність того, що при одному пострілі влучить другий стрілець і не влучить перший, (подія Z) визначаємо як ймовірність перерізу (добутку) подій :”перший не влучив” і Х2:”другий влучив”.
За умовою
Ймовірність події Y дорівнює (згідно з теоремами множення і додавання):
В силу незалежності подій Х1 та Х2, і враховуючи, що ймовірність події Z – це умовна ймовірність події Х2 при умові події , знаходимо
З іншого боку, подію Z можна подати як переріз події Y та події Х2 при умові, що подія Y здійснилася. Згідно з теоремою множення
,
де – апостеріорна ймовірність того, що наявне одне влучення у мішень зроблено другим стрільцем.
Звідси знаходимо шукану ймовірність того, що влучив другий стрілець при умові, що є одне попадання:
Завдання 2
Ймовірність настання події
А у кожному з 18 незалежних випробуваннях дорівнює 0,2. Знайти ймовірність настання цієї події принаймні двічі.
Розв’язання
Задані в задачі випробування є випробуваннями Бернуллі. Ймовірність появи події А у кожному окремому випробуванні становить
р=Р(А)=0,2,
а ймовірність її непояви
q=P()=1-P(A)=1-0,2=0,8.
Ймовірність того, що подія А відбудеться К разів у серії з N випробувань визначається за формулою Бернуллі:
,
де – число сполучень з N елементів по K.
Ймовірність того, що подія А відбудеться принаймні 2 рази (тобто 2 або більше) дорівнює
Для спрощення розрахунків перейдемо до протилежної події (поява події А менше 2 разів, тобто 0 або 1 раз):
Завдання 3
Випадкова величина
Х задана рядом розподілу Х х1 х2 х3 х4 Р р1 р2 р3 р4
Визначити невідому р і. Знайти функцію розподілу випадкової величини
F(Х) та побудувати її графік. Обчислити математичне сподівання М(Х), дисперсію D(Х) та середнє квадратичне відхилення випадкової величини Х.
Х 11 13 15 19 Р 0,18 0,32 0,4 ?
Розв’язання
Згідно з умовою нормування розподілу ймовірностей випадкової величини
Звідси знаходимо :
Функцію розподілу знаходимо на основі означення функції розподілу:
Графік функції розподілу зображено на рис.1.
Математичне сподівання:
Дисперсія:
Середнє квадратичне відхилення
Завдання 4
1. Записати вибірку у вигляді:
- варіаційного ряду;
- статистичного ряду частот;
- статистичного ряду відносних частот.
2. Побудувати полігон, гістограму та кумуляту для вибірки, поданої у вигляді таблиці частот.
3. Обчислити числові характеристики варіаційного ряду розподілу:
- середнє арифметичне значення;
- моду;
- медіану;
- дисперсію;
- середнє квадратичне відхилення;
- коефіцієнт варіації.
4. Пояснити зміст обчислених числових характеристик.
Вибірка:
7 8 4 0 4 6 5 4 3 2 4 8 6 2 2 5 3 6 6 5 5 3 5 6 7 8 9 5 2 5 4 5
6 6 3 6 5 3 4 5 10 3 7 5 3 3 3 7 5 3 4 9 2 1 4 4 4 2 4 3 4 4 5 5
3 7 5 3 2 6 2 4 4 4 0 6 1 3 4 4 5 4 8 3 5 4 11 9 9
Розв’язання
1:
a) Варіаційний ряд – це послідовність варіант (спостережуваних значень), розташованих у зростаючому порядку. ............