MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Топологические пространства

Название:Топологические пространства
Просмотров:73
Раздел:Математика
Ссылка:Скачать(20 KB)
Описание: Еще более экономный способ задания топологии состоит в задании ее предбазы — множества, которое становится базой, если к нему прибавить произвольные конечные пересечения его элементов.

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Современная гуманитарная академия Реферат по предмету "Алгебра и геометрия" на тему: "Топологические пространства" Выполнил: Макриденков С.А. гр. ОИН-309-02 Смоленск 2004
    Содержание
    
    Введение 3
    Основные этапы развития топологии 5
    Определение топологического пространства 7
    Задачи топологии 10
    Виды топологии 12
     Введение
    Любой человек, изучавший начала математического анализа, понимает важность понятия непрерывности функции. Немного упрощая ситуацию, можно сказать, что непрерывность числовой функции - это математическая формализация следующего свойства: график этой функции можно нарисовать на листе бумаги, не отрывая карандаша, то есть график нигде не разрывается. Числовая функция есть частный случай более общего понятия отображения, которое определяется уже не для чисел, а для элементов произвольных множеств. Возникает вопрос, можно ли определить понятие непрерывности отображений на множествах. Оказывается, для того чтобы корректно ввести это понятие, необходимо задать на множествах дополнительную структуру, так называемую топологию; множество с указанной структурой называется топологическим пространством. Математическая дисциплина, изучающая указанные выше понятия (и не только их), тоже называется топологией.
    Топологическое пространство - основной объект изучения топологии. Понятие топологического пространства можно рассматривать как обобщение понятия геометрической фигуры, в котором мы отвлекаемся от свойств наподобие размера или точного положения частей фигуры в пространстве, и сосредотачиваемся только на взаимном расположении частей. Топологические пространства возникают естественно почти во всех разделах математики.
    Определение. Пусть дано множество X. Множество T его подмножеств называется топологией на X, если выполнены следующие свойства: * Все X и пустое множество принадлежат T, * Объединение произвольного семейства множеств, принадлежащих T, принадлежит T, * Пересечение двух множеств, принадлежащих T, принадлежит T.
    Множество X вместе с заданной на нем топологией T называется топологическим пространством. Подмножества X, принадлежащие T, называются открытыми множествами
    Способы задания топологии. Не всегда удобно перечислять все открытые множества. Часто удобнее указать некоторый меньший набор открытых множеств, который порождает их все. Формализацией этого является понятие базы топологии: множество B открытых подмножеств топологического пространства (X, T) называется базой топологии T, если всякое открытое множество представляется как объединение множеств из B.
    Еще более экономный способ задания топологии состоит в задании ее предбазы - множества, которое становится базой, если к нему прибавить произвольные конечные пересечения его элементов.
    Топологию можно также задать описав множество Q всех замкнутых множеств (т.е. всех дополнений к открытым множествам).
    Примеры. Вещественная прямая R является топологическим пространством, если назвать открытыми множествами произвольные (пустые, конечные или бесконечные) объединения конечных или бесконечных интервалов. Множество всех конечных интервалов {(a, b) | a, b из R } является базой этой топологии.
    Вообще, евклидовы пространства Rn являются топологическими пространствами. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Проблемы делимитации, топологии и районирования сельских поселений
Просмотров:184
Описание: Проблемы делимитации, топологии и районирования сельских поселений Пространственная характеристика сельского поселения, как единого географического образования, сводится к характеристикам его величины, к

Название:Экономико-географические следствия поляризации энергетического пространства России
Просмотров:174
Описание: Экономико-географические следствия поляризации энергетического пространства России Пространственным выражением усиления противоречий в системе «природа – общество – энергетика» является углубление осн

Название:Цифровые образовательные ресурсы, как составляющая часть электронного образовательного пространства учителя
Просмотров:84
Описание: Кафедра информатики Курсовая работа «Цифровые образовательные ресурсы, как составляющая часть электронного образовательного пространства учителя» Введение Глоба

Название:Границы морского пространства. Договор морского круиза
Просмотров:87
Описание: Содержание 1.  Делимитация и демаркация морских пространств 2.  Договор морского круиза, проформы чартеров 3. Международно-правовые средства обеспечения безопасности судоходства Список литературы

Название:Роль станции юных натуралистов в расширении экологического образовательного пространства школьников
Просмотров:123
Описание: Федеральное агентство по образованию РФ ГОУ ВПО «Шадринский государственный педагогический институт» Факультет педагогики и методики начального образования Кафедра биологии с методикой преподавания

 
     

Вечно с вами © MaterStudiorum.ru