Часть полного текста документа:Углеродные нанотрубки: их свойства и применение Заметка знакомит читателя с удивительным миром нанотрубок - углеродных структур, открытых в 1991 году и активно исследуемых в наши дни. В настоящее время выдвинуты уже сотни различные идей применения нанотрубок в науке и промышленности. О некоторых из этих предложений мы рассказываем в заметке, стараясь при этом подчеркнуть, какие идеи можно реализовать уже сегодня, а какие остаются пока уделом будущего. Многие из перспективных направлений в материаловедении, нанотехнологии, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры. Что же это такое? Углеродные каркасные структуры - это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры - это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул - это их каркасная форма: они выглядят как замкнутые, пустые внутри "оболочки". Самая знаменитая из углеродных каркасных структур - это фуллерен C60 (Рис.1а), абсолютно неожиданное открытие которого в 1985 году вызвало целый бум исследований в этой области (Нобелевская премия по химии за 1996 год была присуждена именно первооткрывателям фуллеренов Роберту Керлу, Гарольду Крото и Ричарду Смалли). В конце 80-х, начале 90-х годов, после того как была разработана методика получения фуллеренов в макроскопических количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов: начиная от C20 (минимально возможного из фуллеренов) и до C70, C82, C96, и выше (некоторые из них показаны на Рис.1). Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году, опять-таки совершенно неожиданно, были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок (Рис.2). Визуально, структуру таких нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и "склеиваем" ее в цилиндр (предостережение: такое сворачивание графитовой плоскости - это лишь способ представить себе структуру нанотрубки; реально нанотрубки растут совсем по-другому). Казалось бы, что проще - берешь графитовую плоскость и сворачиваешь в цилиндр! - однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал! Так что ученым оставалось только изучать их - и удивляться! А удивительного было много. Во-первых, разнообразие форм: нанотрубки могли быть большие и маленькие, однослойные и многослойные, прямые (Рис.2а, б) и спиральные (Рис.2в). Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки также ведут себя экстравагантно: они не "рвутся" и не "ломаются", а просто-напросто перестраиваются! Далее, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут быть и проводниками, и полупроводниками! Может ли какой-либо иной материал с таким простым химическим составом похвастаться хотя бы частью тех свойств, которыми обладают нанотрубки?! Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. ............ |