Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственный технический университет
ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ
Учебное пособие по математике
для студентов всех специальностей
заочной формы обучения
2007
ФУНКЦИЯ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ
Основные определения и понятия
Одним из основных понятий математики является число. Числа целые и дробные, как положительные, так и отрицательные, вместе с числом ноль называются рациональными числами. Рациональные числа могут быть представлены в виде конечных или бесконечных периодических дробей. Числа, которые представляются в виде бесконечных, но непериодических дробей, называются иррациональными.
Совокупность всех рациональных и иррациональных чисел называется множеством действительных, или вещественных чисел. Действительные числа можно изображать точками числовой оси. Числовой осью называется бесконечная прямая, на которой выбраны:
1) некоторая точка О, называемая началом отсчёта;
2) положительное направление, указываемое стрелкой;
3) масштаб для измерения длин.
Между всеми действительными числами и всеми точками числовой оси существует взаимно–однозначное соответствие, т.е. каждому действительному числу соответствует точка числовой оси и наоборот.
Абсолютной величиной (или модулем) действительного числа x называется неотрицательное действительное число ׀x׀, определяемое следующим образом: ׀x׀ = x, если x ≥ 0, и ׀x׀ = –x, если x < 0.
Переменной величиной называется величина, которая принимает различные численные значения. Величина, численные значения которой не меняются, называется постоянной величиной.
Переменная величина называется упорядоченной, если известна область её изменения и про каждое из двух любых её значений можно сказать, какое из них предыдущее и какое последующее. Частным случаем такой величины является числовая последовательность
Переменная величина называется возрастающей (убывающей), если каждое её последующее значение больше (меньше) предыдущего. Возрастающие и убывающие переменные величины называются монотонными. Переменная величина называется ограниченной, если существует такое постоянное число M > 0, что все последующие значения переменной, начиная с некоторого, удовлетворяют условию:
– M ≤ x ≤ M, т.е. ׀x׀ ≤ M.
Переменная величина y называется (однозначной) функцией переменной величины x, если каждому значению переменной величины x, принадлежащему множеству действительных чисел X, соответствует одно определённое действительное значение переменной величины y.
Переменная x называется в этом случае аргументом, или независимой переменной, а множество X – областью определения функции.
Запись y = f(x) означает, что y является функцией x. Значение функции f(x) при x = a обозначают через f(a).
Область определения функции в простейших случаях представляет собой: интервал (открытый промежуток) (a, b), т.е. ............