Московский Авиационный Институт
(Технический Университет)
Кафедра 308
Курсовая работа
Выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ
Вариант II(2)
Выполнила
студентка
группы КТ-515
Принял
Москва
2008г.
Содержание
Задание
1. Метод динамического программирования
1.1 Теоретическая часть
2.2 Практическая часть
- ручной счёт
- листинг программы
2. Метод ветвей и границ
2.1 Теоретическая часть
2.2 Практическая часть
- ручной счёт
- листинг программы
Вывод
Литература
Задание
Вариант II(2)
Выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ при непересекающихся элементах объекта контроля и ограничениях по затратам на контроль С≤16.
Исходные данные: вероятность отказов элементов и затраты на контроль параметров.
Выбрать такие параметры, чтобы С≤16 при Q=Qmax. N 1 2 3 4 5 6 7 8 9 10 Qi 0.17 0.03 0.15 0.09 0.13 0.08 0.07 0.02 0.06 0.04 с(xi) 5 1 4 2 6 3 2 3 1 1
1. Метод динамического программирования
1.1 Теоретическая часть
Математически задачу выбора набора параметров из заданной их совокупности можно сформулировать следующим образом.
Пусть работоспособность объекта контроля характеризуется совокупностью n взаимосвязанных параметров, образующих множество S={x1, x2, …, xn}. Проверка всех параметров из S влечет контроль всех N элементов системы и дает однозначный ответ: объект исправен, если все N элементов исправны, или неисправен, если по крайней мере один из элементов отказал. Для " xi определено подмножество R(xi) элементов, проверяемых при контроле i-го параметра, причем предполагаем, что эти подмножества могут пересекаться, т.е. $ i, j: R(xi)ÇR(xj). Пусть W - некоторый набор параметров из множества S, т.е. WÍS. Тогда WÇW=Æ и WÈW=S. Значения xi из S можно представить булевым вектором, причем
xi = 1, если xiÎW,
0, если xiÎW.
Задача выбора параметров в этом случае формулируется двояко:
1) найти набор Ω, для которого
P(Ω)=max
при ∑xi·c(xi)≤C; iЄΩ
2) найти набор Ω, для которого
∑xi·c(xi)=min
при P(Ω)≥Pз,
где P(Ω) – апостериорная вероятность работоспособного состояния объекта контроля при положительном исходе контроля выбранных параметров WÍS; с(xi) – затраты на контроль i-го параметра; Рз – требуемая достоверность контроля; С – ограничение на общую стоимость контроля.
Значение P(Ω) зависит от принятых допущений и может быть найдено по формуле Байеса. Так, если предполагать в изделии наличие лишь одного отказа, то
P(Ω)=Р0/1-∑Рi,
iЄR(Ω)
где Р0=∏(1-рi) – априорная вероятность безотказной работы объекта:
iЄR(S)
Р0=1-∑Рi;
iЄR(S)
Рi - нормированная вероятность отказа системы из-за отказа i-го элемента: Рi=(pi/(1-pi))/(1+∑ pk/(1-pk); kЄR(S)
pi – априорная вероятность отказа i-го элемента. Тогда вероятность того, что отказ будет обнаружен при проверке k-го параметра, можно вычислить по формуле:
Qk=∑Pk
kЄR(xk)
При возможности наличия в ОК произвольного числа отказов
P(Ω)=∏(1-pi)/∏(1-pi)
iЄR(S) iЄR(Ω)
Можно использовать простой перебор вариантов, однако возникающие при этом вычислительные трудности не позволяют сделать этого даже для простых систем (при n>10). ............