Министерство образования и науки Украины
кафедра прикладной математики
КОНТРОЛЬНАЯ РАБОТА
по дисциплине "Эконометрия"
Харьков, 2008 г.
Задание № 1.
По заданным статистическим данным с помощью пакета "Excel":
построить диаграмму рассеивания и подтвердить гипотезу о линейной зависимости
Y = b0 + b1 * X;
определить параметры b0 и b1;
вычислить коэффициенты детерминации R2 и коэффициент корреляции r;
сделать прогноз Y в указанной точке Xр.
Решение:
1. Набираем исходные данные в таблицу 1:
Таблица 1
X Y 3.11 10.65 3.15 11.87 3.85 12.69 4.84 13.40 4.62 15.12 4.87 16.03 6.09 16.29 7.06 18.07 6.23 18.40 6.83 19.53 8.01 20.48 8.26 21.72 9.37 23.17 9.02 23.57 9.76 24.41
2. На основе данных таблицы1 строим диаграмму рассеивания.
Визуально можно предположить, что между данными существует линейная зависимость, то есть их можно аппроксимировать линией.
Y = b0 + b1X
3. Найдем параметры b0 и b1.
Опишем полученный результат:
в первой строке находятся оценки параметров регрессии b1, b0;
во второй строке находятся средние квадратичные отклонения sb1, sb0.
в третьей строке в первой ячейке находится коэффициент детерминации R2, а во второй ячейке оценка среднего квадратичного отклонения показателя sе.
в четвертой строке в первой ячейке находится расчетное значение F - статистики, во второй ячейке находится k - число степеней свободы;
в пятой строке в первой ячейке находится сумма квадратов отклонений расчетных значений показателя от его среднего значения, а во второй ячейке - сумма квадратов остатков.
Полученные результаты заносим в таблицу 2.
Таблица 2.
Результаты расчетов 1,958977 5,277335 0,10027 0,671183 0,967063 0,836194 381,6981 13 266,8909 9,089857
По данным таблицы 2 можем записать модель:
Y = 5,277335 + 1,958977Х
Коэффициент детерминации R2 = 0,967063 - близок к 1, следовательно, модель адекватна.
4. Найдем прогноз в заданной точке Xp = 10,1. Для этого подставим Xp в модель. Получим
Yp = 5,277335 + 1,958977 * 10,1 = 25,063.
Все полученные результаты запишем в таблицу 3.
Таблица 3.
X Y 3.11 10.65 3.15 11.87 3.85 12.69 4.84 13.40 4.62 15.12 4.87 16.03 6.09 16.29 7.06 18.07 6.23 18.40 6.83 19.53 8.01 20.48 8.26 21.72 9.37 23.17 9.02 23.57 9.76 24.41 10,1 25,063
5. Диаграмма примет вид:
6. Вычислим коэффициент корреляции r. В результате расчета получим коэффициент корреляции r = 0,9834.
r = = √0,967063 = 0.9834
Задание № 2.
По заданным статистическим данным с помощью пакета "Excel":
построить диаграмму рассеивания и подтвердить гипотезу о криволинейной связи между Х и Y;
произвести линеаризацию;
определить параметры a и b;
сделать прогноз в указанной точке;
Решение:
Набираем исходные данные в таблицу 1:
Таблица 1.
X Y 1,03 0,44 1,63 0,33 2,16 0,25 2,71 0, 20 3,26 0,16 3,77 0,12 4,35 0,10 4,91 0,07 5,50 0,05 6,01 0,04
На основе данных таблицы 1 строим диаграмму рассеивания.
Визуально можно предположить, что зависимость не линейная. Исходная модель имеет вид Y = beax. Делаем линеаризующую подстановку: V = Y, U = lnX.
Полученные данные заносим в таблицу 2.
Таблица 2. ............