MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Алгоритмы с многочленами

Название:Алгоритмы с многочленами
Просмотров:108
Раздел:Математика
Ссылка:Скачать(224 KB)
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ   НАБЕРЕЖНОЧЕЛНИНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ   МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ   КАФЕДРА МАТЕМАТИКИ И

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

 

НАБЕРЕЖНОЧЕЛНИНСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

 

МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

 

КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ЕЕ ПРЕПОДАВАНИЯ


АЛГОРИТМЫ С МГНОГОЧЛЕНАМИ

/дипломная работа/


Набережные Челны

2006 год


Содержание

Введение

1. Многочлены

2. Деление многочленов

2.1. Делимость многочленов. Свойства делимости

2.2. Деление многочленов с остатком

2.3. Наибольший общий делитель многочленов

2.4. Алгоритм Евклида

3. Кратные корни

4. Производная от многочлена

5. Кратные множители

5.1. Выделение кратных множителей

Заключение

Список использованной литературы


Введение

 

Тема моей дипломной работы: «Алгоритмы с многочленами».

Целью данной работы является изучение многочленов, алгоритмов с ними, рассмотрение возможностей составления различных программ. Для достижения поставленной цели необходимо рассмотреть следующие вопросы:

– делимость многочленов;

– деление многочленов с остатком;

– наибольший общий делитель, алгоритм Евклида;

– кратные корни;

– кратные множители, выделение кратных множителей;

– производные от многочленов.

Для выполнения дипломной работы я поставила следующие задачи:

1.         изучить литературу о многочленах;

2.         применить теорию высшей алгебры в решении задач элементарной математики;

3.         составить программы для нахождения частного и остатка при делении многочленов, наибольшего общего делителя двух многочленов, производной многочлена; разложения многочленов на кратные множители.


1. Многочлены

Общий вид уравнения n-ной степени (где n некоторое положительное число) есть

.                                                                     (1.1)

Коэффициенты  этого уравнения мы будем считать произвольными комплексными числами, причем старший коэффициент  должен быть отличным от нуля.

Если написано уравнение (1.1), то всегда предполагается, что требуется его решить, найти такие числовые значения для неизвестного x, которые удовлетворяют этому уравнению, то есть после подстановки вместо неизвестного и выполнения всех указанных операций обращают левую часть уравнения (1.1) в нуль.

Целесообразно заменить задачу решения уравнения (1.1) более общей задачей изучения левой части этого уравнения

,                                                                           (1.2)

называемой многочленом n-ной степени от неизвестного х. Многочленом называется лишь выражение вида (1.2), то есть лишь сумма целых неотрицательных степеней неизвестного x, взятых с некоторыми числовыми коэффициентами. В частности, мы не будем считать многочленами такие выражения, которые содержат неизвестное x с отрицательными или дробными показателями. Для сокращенной записи многочленов употребляются символы f(x), g(x) и так далее.


2. Деление многочленов

Теория многочленов в определенном отношении похожа на теорию целых чисел, хотя внешне эти две теории не имеют ничего общего. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Просмотров:254
Описание: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень Ефективний шлях багаторазового зведення за модулем – використання методу Монтгомері, який було запропоно

Название:Многочлены Лежандра, Чебышева и Лапласа
Просмотров:240
Описание: СОДЕРЖАНИЕ   Введение 1.  Многочлены Лежандра 2.  Многочлены Чебышева 3.  Преобразование Лапласа 4.  Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутк

Название:Судоку и хроматические многочлены
Просмотров:229
Описание: ОТДЕЛ ОБРАЗОВАНИЯ ГОМЕЛЬСКОГО ГОРОДСКОГО ИСПОЛНИТЕЛЬНОГО КОМИТЕТА Государственное учреждение образования "Средняя общеобразовательная школа № 22 г. Гомеля" Конкурсная работа "Суд

Название:Вычисление характеристических многочленов, собственных значений и собственных векторов
Просмотров:247
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ИНФОРМАТИКИ Курсовая работа по дисциплине «Численные методы» на тему: «Вычисление характери

Название:Минимальные формы булевых многочленов
Просмотров:89
Описание: Федеральное агенство по образованию РФ Саратовский государственный университет имени Н.Г. ЧернышевскогоКафедра геометрии курсовая работа Минимальные формы булевых многочленов

 
     

Вечно с вами © MaterStudiorum.ru