MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Минимальные формы булевых многочленов

Название:Минимальные формы булевых многочленов
Просмотров:89
Раздел:Математика
Ссылка:Скачать(44 KB)
Описание: Федеральное агенство по образованию РФ Саратовский государственный университет имени Н.Г. ЧернышевскогоКафедра геометрии курсовая работа Минимальные формы булевых многочленов

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Федеральное агенство по образованию РФ Саратовский государственный университет

имени Н.Г. Чернышевского


Кафедра геометрии

курсовая работа

Минимальные формы булевых многочленов

г. Саратов 2009 г.


содержание

 

Введение

Основные понятия булевой алгебры

1.1 Основные этапы развития булевой алгебры

1.2 Основные определения булевой алгебры

1.3 Минимальные формы булевых многочленов

II.Решение минимальных форм булевых многочленов с

помощью метода Куайна – Мак-Класки

Заключение

Список используемых источников.


ВВЕДЕНИЕ

 

Булевы алгебры – это решетки особого типа, которые применяются при исследовании логики (причем как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Это последнее приложение было инициировано К. Шенноном, показавшим, что фундаментальные свойства электрических сетей, состоящих из бистабильных элементов, могут быть выражены с помощью булевых алгебр. Наряду с шенноном пионерами в применении теории булевых алгебр для решения задач релейной техники в 1936-1938 гг. были русский математик В.И. Шестаков и японцы А.Накасима и М. Ханзава. Отметим также, что ещё в 1910 г. известный физик П. Эренфест в рецензии на русский перевод книги Л. Кутюра «Алгебра логики» указал на потенциальную применимость булевой логики к проектированию автоматических телефонных станций, сформулировав вопросы о реализуемости булевых функций и минимизации схем.

Целью данной курсовой работы является изучение булевой алгебры и применение минимальных форм булевых многочленов к решению задач.

Курсовая работа состоит из введения, трех глав, заключения и списка используемых источников.

Во введении описана актуальность темы, сформулирована цель, дана структура курсовой работы.

В первой главе даны основные определения и основные понятия булевой алгебры.

Во второй главе дается определение минимальных форм булевых многочленов и намечен курс дальнейшего исследования.

Третья глава посвящена применению минимальных форм булевых многочленов к решению задач.

В заключении сформулированы основные выводы к работе.


I. ОСНОВНЫЕ ПОНЯТИЯ БУЛЕВОЙ АЛГЕБРЫ

1.1 Основные этапы развития булевой алгебры.

В 1847 году Дж. Буль написал маленькую, но эпохальную книгу «математический анализ логики», в которой логика трактовалась как чисто формальная система; интерпретация в обычном языке пришла позже. Буль писал, что математика характеризуется своей формой, но не содержанием. В своей последующей книге «Исследование законов мышления» (1854) он ввел понятие булевой алгебры.

Булевское исчисление логики сосредоточено на формальной трактовке логики посредством математических (особенно алгебраических) методов и на описании логических тождеств. Следуя Булю, школа английских математиков, а также Шрёдер, Уайтхед разработали аксиоматику операций конъюнкции, дизъюнкции, отрицания; с другой стороны, Пирс и Шрёдер создали аксиоматику порядка, используя отношение включения в качестве фундаментального понятия. В 1904 году Хантингтон исследовал две системы аксиом и начал трактовать булевы алгебры как самостоятельные математические структуры, не обязательно связанные с логикой.

Буль использовал дистрибутивность пересечения относительно объединения, которую еще до него отметил Ламберт. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Просмотров:254
Описание: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень Ефективний шлях багаторазового зведення за модулем – використання методу Монтгомері, який було запропоно

Название:Многочлены Лежандра, Чебышева и Лапласа
Просмотров:240
Описание: СОДЕРЖАНИЕ   Введение 1.  Многочлены Лежандра 2.  Многочлены Чебышева 3.  Преобразование Лапласа 4.  Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутк

Название:Основная теорема алгебры
Просмотров:124
Описание: Федеральное агентство по образованию Российской Федерации САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО Кафедра компьютерной алгебры и теории чисел Основная теор

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:223
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

Название:Исторические экскурсы в курсе алгебры 7 класса как средство развития познавательного интереса
Просмотров:150
Описание: ГОУ СПО "Кунгурское педагогическое училище" ПЦК преподавателей естественно-математических дисциплин Выпускная квалификационная работа по методике математики Исторические экскур

 
     

Вечно с вами © MaterStudiorum.ru