MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Дедукция и индукция

Название:Дедукция и индукция
Просмотров:108
Раздел:Математика
Ссылка:Скачать(8 KB)
Описание:В основу всякого научного исследования, в том числе и математического, лежат дедуктивный и индуктивный методы.

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Дедукция и индукция
    
    В основу всякого научного исследования, в том числе и математического, лежат дедуктивный и индуктивный методы. Дедукция (от латинского "deductio" - выведение) - переход от общего к частному, индукция (от латинского "inductio" - наведение) - вид обобщений, связанных с предвосхищением результатов наблюдений и экспериментов на основе данных прошлых лет. В математике дедуктивный метод мы применяем, например, в рассуждениях такого типа: данная фигура - прямоугольник; у каждого прямоугольника диагонали равны. Индуктивный подход обычно начинается с анализа и сравнения данных наблюдения или эксперимента. Многократность повторения какого-либо факта приводит к индуктивному обобщению. Индуктивный подход люди, часто сами того не замечая, применяют почти во всех сферах деятельности. Так, например, рассуждения, с помощью которых суд приходит к решению, можно сравнить с индуктивными рассуждениями. Такие сравнения уже предлагались и обсуждались авторитетами по судебной практике. На основании некоторых известных фактов выдвигается какое-либо предположение (гипотеза). Если всё вновь выявленные факты не противоречат этому предположению и являются следствием его, то это предположение становится более правдоподобным. Конечно, для практики повседневного и научного мышления характерны обобщения на основе исследования не всех случаев, а только некоторых, поскольку число всех случаев, как правило, практически необозримо. Такие обобщения называются неполной индукцией.
    Если же общее утверждение удаётся доказать во всех возможных случаях, то такая индукция называется полной. Результат, полученный неполной индукцией, вообще говоря, не является логически обоснованным, доказанным. Известно много случаев, когда утверждения, полученные неполной индукцией, были неверными В математике примером такого утверждения может служить следующее. Рассматривая числа вида 2^2^n+1, французский математик П. Ферма заметил, что при n=1,2,3,4 получаются простые числа. Он предположил, что все числа такого вида простые. Однако Л. Эйлер нашел, что уже при n=5 число 2^32+1 не является простым: оно делится на 641. Вместе с тем неполная индукция является мощным эвристическим методом открытия новых истин, которые подтверждаются иногда спустя много лет. Тот же П. Ферма в 1630 г. сформулировал и другую теорему: "Для любого натурального числа n>2 уравнение x^n+y^n=z^n не имеет решений целых ненулевых числах x,y,z". Многие математики пытались доказать или опровергнуть это утверждение, но только в 1993 году (спустя 360 лет!) американский математик из Принстонского университета Andrew Wiles (андре Вайлье) доказал эту теорему.
    Интересно, что Л. Эйлеру принадлежит утверждение, которое до сих пор не доказано: "Любое целое число вида 8n=3 является суммой квадрата и удвоенного простого числа". Сам Эйлер удовлетворился, что это утверждение верно для всех целых чисел такого вида до 200. После него такая эмпирическая работа была проведена для чисел до 1000. Доказывает ли это гипотезу Эйлера? Никоим образом. Тем не менее каждое подтверждение делает это предположение более правдоподобным.
    
    Метод математической индукции.
    Неполная индукция, как мы видели, приводит часто к ошибочным результатам. Метод полной индукции имеет лишь ограниченное применение. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Свойства линейной прогрессии
Просмотров:172
Описание: Министерство образования и науки Украины Донбасская государственная машиностроительная академияКонтрольная работа по дисциплине: «Эконометрика» Выполнила: студентка гр. ПВ 09-1з Бурденюк Е.Н.

Название:Использование мультимедиа на уроках алгебры по теме: «Прогрессии» как средство повышения успеваемости учащихся 9 класса
Просмотров:98
Описание: ГОУ СПО «Кунгурское педагогическое училище» ПЦК преподавателей естественно – математических дисциплин                                           Допущена к защите:                                 

Название:Определение индукции магнитного поля и проверка формулы Ампера
Просмотров:193
Описание:   Определение индукции магнитного поля и исследование формулы Ампера     Введение В последнее время физики вновь обратились к необходимости использования различных

Название:Экспериментальное исследование явления электромагнитной индукции и практическое его применение
Просмотров:98
Описание: МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "НОВОЧЕРКАСКИЙ МЕХАНИКО-ТЕХНОЛОГИЧЕСКИЙ КОЛ

Название:Построение двухфакторной модели, моделей парной линейной прогрессии и множественной линейной регрессии
Просмотров:164
Описание: ЗАДАНИЕ №1 По предложенной выборке наблюдений результативного признака у и факторных признаков х1,х2,х3 требуется с помощью корреляционного анализа выбрать факторные признаки для построения двухфакторной м

 
     

Вечно с вами © MaterStudiorum.ru