Институт экономики и предпринимательства
(ИНЭП)
Контрольная работа по дисциплине
«Эконометрика»
Вариант 1
Выполнил:
студент группы №
Проверил:
преподаватель ИНЭП,
кандидат технических наук
Ю.М. Давыдов
г. Лосино-Петровский
2008-2009 уч. год
1. Цель работы
Цель контрольной работы – демонстрация полученных теоретических знаний и приобретенных практических навыков по эконометрике – как синтезу экономической теории, экономической статистики и математики, в том числе исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР), трендовых моделей, методом наименьших квадратов (МНК).
Для проведения расчетов использовалось приложение к ПЭВМ типа EXCEL.
2. Исследование линейных моделей парной (ЛМПР) и
множественной регрессии (ЛММР) методом наименьших
квадратов (МНК).
2.1 Контрольная задача № 1
2.1.1. Исследуем зависимость производительности труда Y (т/ч) от уровня механизации Х (%).
Исходные данные для 14 однотипных предприятий приводятся в таблице 1:
Таблица 1
xi 32 30 36 40 41 47 56 54 60 55 61 67 69 76 yi 20 24 28 30 31 33 34 37 38 40 41 43 45 48
2.1.2 Матричная форма записи ЛМПР (ЛММР):
Y^ = X* A^ (1), где А^ – вектор-столбец параметров регрессии;
xi1 – предопределенные (объясняющие) переменные, n = 1;
ранг матрицы X = n + 1= 2 < k = 14 (2).
Исходные данные представляют в виде матриц.
( 1 32 ) (20 )
( 1 30) (24 )
( 1 36) (28 )
( 1 40 ) (30 )
(1 41 ) (31 )
( 1 47 ) (33)
X = (1 56) Y = (34 )
(1 54) (37 )
(1 60 ) (38 )
(1 55 ) (40 )
( 1 61 ) (41 )
( 1 67 ) (43)
(1 69 ) (45 )
( 1 76 ) (48 )
Значение параметров А^ = (а0, а1) T и s2 – нам неизвестны и их требуется определить (статистически оценить) методом наименьших квадратов.
Так как матрица Х, по условию, является прямоугольной, а обратную матрицу Х-1 можно рассчитать только для квадратной матрицы, то произведем небольшие преобразования матричного уравнения типаY = X *A, умножив левую и правую части на транспонированную матрицу Х Т.
Получим XT* X * A^ = X T * Y ,
откуда A^ = (XT * X ) –1 *( XT * Y) (3),
где (XT * X ) –1 - обратная матрица.
2.1.2. Решение.
а) Найдем транспонированную матрицу ХТ :
( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )
XT = ( 32 30 36 40 41 47 56 54 60 55 61 67 69 76 )
в) Находим произведение матриц XT *X :
( 14 724 )
XT * X = ( 724 40134)
г) Находим произведение матриц XT * Y:
( 492 )
XT * Y = ( 26907 )
д) Вычисляем обратную матрицу ( XT * X) –1 :
( 1,064562 -0,0192 )
( XT * X) –1 = (-0,0192 0,000371)
е) Умножаем обратную матрицу ( XT * X) –1 на произведение
матриц (XT *Y) и получаем вектор- столбец A^ = (a 0 , a 1)T :
( 7,0361 )
A^ = ( XT * X) –1 * (XT * Y) = ( 0,543501).
Уравнение парной регрессии имеет следующий вид:
уi^ = 7,0361 + 0,543501* xi1 (4).
уi^ (60) = 7,0361 + 0,543501*60 = 39, 646.
2.1.3 Оценка качества найденных параметров
Для оценки качества параметров Â применим коэффициент детерминации R2 . Величина R2 показывает, какая часть (доля) вариации зависимой переменной обусловлена объясняющей переменной. Чем ближе R2 к единице, тем лучше регрессия аппроксимирует экспериментальные данные.
Q = ∑(yi - y¯)2 (5) – общая сумма квадратов отклонений зависимой переменной от средней; QR = ∑(y^i - y¯)2 (6) – сумма квадратов, обусловленная регрессией; Qе = ∑(yi – y^i)2 (7) – остаточная сумма квадратов, характеризующая влияние неучтенных факторов; Q = QR + Qе (8). ............