Геометрія молекул
На сьогодні питання геометрії молекули, тобто питання про напрям в просторі її валентних зв’язків може бути розв’язаний теоретично в рамках задач квантової хімії.
У випадку, коли зовнішні валентні атома мають виділений в просторі напрямок електронної хмари, то можна передбачити напрямок в просторі хімічного зв’язку, що виникає з їх участю. Це теорія направлених валентностей, що витікає з квантово-механічного методу валентних зв’язків. Валентний зв’язок утворюється в напрямку максимального перекриття електронних хмар.
В природі є величезна кількість молекул, які мають різноманітну форму.
Що слід розуміти під формою молекули?
Молекула – це система додатньо-завершених ядер, що певним чином розміщені в просторі, і електронна хмара, утворена внутрішніми і зовнішніми електронами атомів, що входять в склад молекули. Внутрішні електрони атомів, що лежать близько до ядра, в утворенні хімічного зв’язку між атомами участі не приймають, а зовнішні електрони в молекулі поводять себе не так як в окремих атомах. Форми молекул можуть бути розділені на три групи:
1. Лінійні – двох- і багатоатомні молекули, ядра яких розміщені по прямій.
2. Плоскі – ядра молекул розміщені в одній площині.
3. Просторові – найбільш чисельніший і різноманітний клас.
Що слід розуміти під геометричною формою молекул?
Строго кажучи, форма молекули повинна визначатись зовнішньою електронною оболонкою молекули. Але з квантової механіки відомо, що положення електронів в просторі не визначене і можна говорити тільки про імовірність того чи іншого перебування електронів, тому визначати геометричну форму молекули по електронній оболонці незручно, так як в різних експериментах може виявитись різною. У зв’язку з цим під формою і розмірами молекули розуміють слідуюче: під формою молекули розуміють закон взаємного розміщення додатньо заряджених ядер молекули в просторі, а під розмірами молекул розуміють об’єм простору, який займають ядра молекули. Тому основними геометричними параметрами, що визначають геометричну форму молекули є: довжина хімічних зв’язків.
Довжиною хімічного зв’язку називається віддаль по прямій між ядрами атомів, що зв’язані між собою хімічним зв’язком. Оцінити довжину хімічного зв’язку у двохатомній молекулі (АВ), що утворюється за схемою А2 + В2 = 2АВ, можна за формулою
де dA–A і dB–B – міжатомні віддалі в молекулах А2 і В2.
Міжатомна віддаль, як правило, рівна сумі ковалентних радіусів атомів, що утворили зв’язок. Наприклад, d(Si–C) = rков(С) + rков(Si) = = 0,771 + 1,75 = 2,528Å. На довжину зв’язку між однотипними атомами впливає розподіл електронної густини у молекулах. Наприклад, d(N–H) у різних молекулах різне:
1) NH3 d(N–H) = 1,008Å; 4) HN3 d(N–H) = 1,02Å;
2) Co(NH2)2 d(N–H) = 1,036Å; 5) HNCS d(N–H) = 1,013Å;
3) NH4+ d(N–H) = 1,034Å; 6) NHCO d(N–H) = 0,99Å.
З метою врахування розподілу електронної густини в молекулі Шомакер і Стівенсон для розрахунку міжатомних віддалей між двома атомами запропонували формулу
d(A – B) = rA + rB – 0,99|XA – XB|,
де Х – електронегативність атомів А і В,
rA, rВ – ковалентні радіуси атомів А і В.
Довжина зв’язку може дати деякі вказівки відносно порядку або кратності вз’язку. Для зв’язків атому карбону можна накреслити криву залежності між довжиною та порядком зв’язку (мал. ............