MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Интеграл дифференциального уравнения

Название:Интеграл дифференциального уравнения
Просмотров:77
Раздел:Математика
Ссылка:Скачать(53 KB)
Описание: АНО ВПО «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИМЕНИ ЕКАТЕРИНЫ ВЕЛИКОЙ»Контрольное задание По дисциплине: «Математика»Москва 2010 г. Контрольное задание:   Упражнения 1. Дана последовательность аn=(3n-5)/(4n+1). Установит

Часть полного текста документа:

АНО ВПО «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИМЕНИ ЕКАТЕРИНЫ ВЕЛИКОЙ»


Контрольное задание

По дисциплине: «Математика»


Москва 2010 г.


Контрольное задание:

 

Упражнения

1. Дана последовательность аn=(3n-5)/(4n+1). Установить номер n0, начиная с которого выполняется неравенство │аn-А │ < 1/500.

Отв. n0=719.

Найти:

2. lim (3-√х)/(х2-81).Отв. –1/108.

х→9

3. lim (5х2-8)/(х3-3х2+11).Отв. 0.

х→∞

Проверить непрерывность следующих функций:

4. у=5х/(х3+8).Отв. При всех х≠–2 функция непрерывна.

5. у=(х2+4)/ √(х2-36). Отв. Функция непрерывна при всех значениях

│х│>6.

6. Определить точки разрыва функции у=(8х+2)/(16х2-1).

Отв. Точки х1=–1/4 и х2=1/4.

Задача 1

Найти общий интеграл дифференциального уравнения:

Решение


Выполним разделение переменных, для этого разделим обе части уравнения на :

Проинтегрируем обе части уравнения и выполним преобразования:

Ответ

Задача 2

Проинтегрировать однородное дифференциальное уравнение:


Решение

Решение однородных дифференциальных уравнений осуществляется при помощи подстановки:

,

С учетом этого, исходное уравнение примет вид:

Выполним разделение переменных, для этого умножим обе части уравнения на , получим,

Проинтегрируем обе части уравнения и выполним преобразования:

Возвращаясь к переменной y, получим общий интеграл исходного уравнения:


Ответ

 

Задача 3

Найти общий интеграл дифференциального уравнения:

Решение

Покажем, что данное уравнение является однородным, т.е. может быть представлено в виде, . Преобразуем правую часть уравнения:

Следовательно, данное уравнение является однородным и для его решения будем использовать подстановку,

С учетом этого, уравнение примет вид:


Выполним разделение переменных, для этого умножим обе части уравнения на ,

Проинтегрируем обе части уравнения,

Возвращаясь к переменной y, получим,

Ответ

 

Задача 4

Решить линейное дифференциальное уравнение:

Решение

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то решение дифференциального уравнения будет иметь вид:

Ответ

Задача 5

Найти общее решение дифференциального уравнения:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где  – частное решение исходного неоднородного ДУ,  – общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и совпадают, то общее решение однородного ДУ будет иметь вид:


Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A, B, C – неопределенные коэффициенты. Найдем первую и вторую производные по x от  и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ


Задача 6

Решить уравнение:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где  – частное решение исходного неоднородного ДУ,  – общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то общее решение однородного ДУ будет иметь вид:

Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A, B, C – неопределенные коэффициенты. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Правовое решение споров и вопросов усыновления
Просмотров:59
Описание: Министерство образования Российской Федерации Якутская государственная сельскохозяйственная академия Юридический факультет Кафедра гражданского и аграрного права КОНТРОЛЬНАЯ РАБОТА

Название:Разрешение конфликтной ситуации и конфликта
Просмотров:150
Описание: проблема конфликт руководитель примирение Реферат на тему: Разрешение конфликтной ситуации и конфликта Содержание 1. Разрешение конфликтной ситуации и конфликта 1.1 Разрешен

Название:Решение задач линейного программирования симплекс-методом
Просмотров:153
Описание: Содержание   Введение 1. Теоретический материал 1.1 Математическая формулировка задачи линейного программирования 1.2 Решение задач линейного программирования симплекс-методом 2. Постановка задачи 3.

Название:Решение практических заданий по дискретной математике
Просмотров:130
Описание: Содержание Введение Задание 1 Представить с помощью кругов Эйлера множественное выражение Используя законы и свойства алгебры множеств, упростить заданное выражение Задание 2 Заданы множества корт

Название:Приближённое решение алгебраических и трансцендентных уравнений
Просмотров:116
Описание:        Приближённое решение алгебраических и трансцендентных  уравнений 1. Общая постановка задачи. Найти действительные корни уравнения , где - алгебраическая или трансцендентная функция. Точные методы реш

 
     

Вечно с вами © MaterStudiorum.ru