MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Иностранный язык -> Interpolation, approximation and differential equations solvers

Название:Interpolation, approximation and differential equations solvers
Просмотров:336
Раздел:Иностранный язык
Ссылка:Скачать(178 KB)
Описание: Contents Problem 1 1.1 Problem definition 1.2 Solution of the problem 1.2.1 Linear interpolation 1.2.2 Method of least squares interpolation 1.2.3 Lagrange interpolating polynomial 1.2.4 Cubic spline interpolation 1.3 Results and discussion 1.3.1 Lagrange polynomial Problem 2 2.1 Problem definition 2.2 Problem solution 2.2.1 Rectangular meth

Часть полного текста документа:

Contents

Problem 1

1.1 Problem definition

1.2 Solution of the problem

1.2.1 Linear interpolation

1.2.2 Method of least squares interpolation

1.2.3 Lagrange interpolating polynomial

1.2.4 Cubic spline interpolation

1.3 Results and discussion

1.3.1 Lagrange polynomial

Problem 2

2.1 Problem definition

2.2 Problem solution

2.2.1 Rectangular method

2.2.2 Trapezoidal rule

2.2.3 Simpson's rule

2.2.4 Gauss-Legendre method and Gauss-Chebyshev method

Problem 3

3.1 Problem definition

3.2 Problem solution

Problem 4

4.1 Problem definition

4.2 Problem solution

References


Problem 1   1.1 Problem definition

For the following data set, please discuss the possibility of obtaining a reasonable interpolated value at , , and  via at least 4 different interpolation formulas you are have learned in this semester.

  1.2 Solution of the problem

Interpolation is a method of constructing new data points within the range of a discrete set of known data points.

In engineering and science one often has a number of data points, as obtained by sampling or experimentation, and tries to construct a function which closely fits those data points. This is called curve fitting or regression analysis. Interpolation is a specific case of curve fitting, in which the function must go exactly through the data points.

First we have to plot data points, such plot provides better picture for analysis than data arrays

Following four interpolation methods will be discussed in order to solve the problem:

·  Linear interpolation

·  Method of least squares interpolation

·  Lagrange interpolating polynomial


Fig 1. Initial data points

·  Cubic spline interpolation

  1.2.1 Linear interpolation

One of the simplest methods is linear interpolation (sometimes known as lerp). Generally, linear interpolation tales two data points, say  and , and the interpolant is given by:

 at the point

Linear interpolation is quick and easy, but it is not very precise/ Another disadvantage is that the interpolant is not differentiable at the point .

1.2.2 Method of least squares interpolation

The method of least squares is an alternative to interpolation for fitting a function to a set of points. Unlike interpolation, it does not require the fitted function to intersect each point. The method of least squares is probably best known for its use in statistical regression, but it is used in many contexts unrelated to statistics.


Fig 2. Plot of the data with linear interpolation superimposed

Generally, if we have  data points, there is exactly one polynomial of degree at most  going through all the data points. The interpolation error is proportional to the distance between the data points to the power n. Furthermore, the interpolant is a polynomial and thus infinitely differentiable. So, we see that polynomial interpolation solves all the problems of linear interpolation.

However, polynomial interpolation also has some disadvantages. Calculating the interpolating polynomial is computationaly expensive compared to linear interpolation. Furthermore, polynomial interpolation may not be so exact after all, especially at the end points. These disadvantages can be avoided by using spline interpolation.

Example of construction of polynomial by least square method

Data is given by the table:


Polynomial is given by the model:

In order to find the optimal parameters  the following substitution is being executed:

, , …,

Then:

The error function:

It is necessary to find parameters , which provide minimums to function :

It should be noted that the matrix  must be nonsingular matrix.

For the given data points matrix  become singular, and it makes impossible to construct polynomial with  order, where  - number of data points, so we will use  polynomial

Fig 3. Plot of the data with polynomial interpolation superimposed

Because the polynomial is forced to intercept every point, it weaves up and down.

  1.2.3 Lagrange interpolating polynomial

The Lagrange interpolating polynomial is the polynomial  of degree  that passes through the  points , , …,  and is given by:

,

Where


Written explicitly

When constructing interpolating polynomials, there is a tradeoff between having a better fit and having a smooth well-behaved fitting function. The more data points that are used in the interpolation, the higher the degree of the resulting polynomial, and therefore the greater oscillation it will exhibit between the data points. Therefore, a high-degree interpolation may be a poor predictor of the function between points, although the accuracy at the data points will be "perfect."

Fig 4. Plot of the data with Lagrange interpolating polynomial interpolation superimposed

One can see, that Lagrange polynomial has a lot of oscillations due to the high order if polynomial.

 

1.2.4 Cubic spline interpolation

Remember that linear interpolation uses a linear function for each of intervals . Spline interpolation uses low-degree polynomials in each of the intervals, and chooses the polynomial pieces such that they fit smoothly together. The resulting function is called a spline. For instance, the natural cubic spline is piecewise cubic and twice continuously differentiable. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Рrofit function
Просмотров:200
Описание: PROFIT FUNCTION Given any production set Y, we have seen how to calculate the profit function. 7г(р), which gives us the maximum profit attainable at prices p. The profit function possesses several important properties that follow directly from its definition. These properties are very useful for analyzing profit-maximizing behavior. Recall that the profit function is, by d

Название:Functional Materials Based on Self-Assembly of Polymeric Supramolecules
Просмотров:268
Описание: Семестровая работа на тему: «Functional Materials Based on Self-Assembly of Polymeric Supramolecules» VIEWPOINT Functional Materials Based on Self-Assembly of Polymeric Supramolecules Self-assembly of polymeric supramolecules is a powerful tool for producing functional material

Название:Interpolation, approximation and differential equations solvers
Просмотров:336
Описание: Contents Problem 1 1.1 Problem definition 1.2 Solution of the problem 1.2.1 Linear interpolation 1.2.2 Method of least squares interpolation 1.2.3 Lagrange interpolating polynomial 1.2.4 Cubic spline interpolation 1.3 Results and discussion 1.3.1 Lagrange polynomial Problem 2 2.1 Problem definition 2.2 Problem solution 2.2.1 Rectangular meth

Название:Functions of Management
Просмотров:120
Описание: SAINt-Petersburg STATE Polytechnical University Faculty of Economics and Management Department of Economics and Management of Machine Production Enterprise Course Paper«Functions of Management»   St. Petersburg 2009 Introduction Research and analysis of functions of manageme

Название:Market and its Functioning
Просмотров:111
Описание: Market and its Functioning Market is an instrument or mechanism which is function on the definite space where customers and sellers with different goods and services are cooperating to each other. Markets are differing from each other with the specific of goods and also services but with the freedom of choice for customer. The main point in consideration of functions of the ma

 
     

Вечно с вами © MaterStudiorum.ru