MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Исследование операций

Название:Исследование операций
Просмотров:92
Раздел:Математика
Ссылка:Скачать(138 KB)
Описание: Министерство образования и науки Украины Днепропетровский Национальный Университет Факультет электроники, телекоммуникаций и компьютерных систем Кафедра АСОИ Расчётная задача №2  

Часть полного текста документа:

Министерство образования и науки Украины

Днепропетровский Национальный Университет

Факультет электроники, телекоммуникаций и компьютерных систем

Кафедра АСОИ

Расчётная задача №2

 

«Исследование операций»

Выполнил:

Ст. группы РС-05

Проверил:

Доцент кафедры АСОИ

Саликов В.А.

г. Днепропетровск

2007г.


Условие задачи

 


1)Решим графическим методом

Следовательно, оптимальное решение: X1=4/9

Х2=35/9

Минимальное значение целевой функции: Z=55/9

2)Симплекс-метод

 

В случае, когда одно или несколько ограничений имеют знаки ³ или = невозможно получить решение. Для получения начального допустимого базиса вводят искусственные переменные R1,R2,R3,R4. Поскольку R1,R2,R3,R4 не имеют отношение к содержательной постановке задачи, то за их применение назначается штраф. В ходе решения задачи на заключительной итерации эти переменные должны принять нулевое значение и выйти из базиса.

Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план, и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план.

Приведем задачу к каноническому виду:

Z=5x1+x2 min

Добавим в систему уравнений искусственные переменные R

 

при ограничениях:

x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0; x7 >= 0; x8 >= 0; x9 >= 0; R1 >= 0; R2 >= 0; R3 >= 0; R4 >= 0

Существуют базисные и небазисные переменные.

Включающиеся переменные называются небазисными в данный момент переменными, которые включаются в состав базиса на следующей итерации.

Исключаемые - базисные переменные, которые на следующей итерации подлежат исключению.

На следующем шаге необходимо подставить значение  в целевую функцию:

Таким образом, задача в стандартной форме имеет следующий вид:

x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0; x7 >= 0; x8 >= 0; x9 >= 0; R1 >= 0; R2 >= 0; R3 >= 0; R4 >= 0

Перенесем члены целевой функции влево

z -5x1-1x2 = 0

Далее задача решается обычным симплекс-методом

Шаг 0. Используя линейную модель стандартной формы, определяют начальное допустимое базисное решение путем приравнивания к нулю n- m небазисных переменных.

Шаг 1. Из числа небазисных переменных (равных нулю) выбирается включаемая в новый базис переменная, увеличение которой обеспечивает больший по сравнению с остальными рост целевой функции (условие оптимальности). Если такой переменной нет, вычисления прекращаются и полученное решение является оптимальным. В противном случае, переходят к шагу 2.

Шаг 2. Из числа переменных текущего базиса выбирается исключаемая переменная, значение которой быстрее всех стремится к нулю при переходе к новой смежной точке (становящаяся небазисной и равной нулю при введении в базис новой переменной - условие допустимости).

Шаг 3. Определяется новое базисное решение (соответствующее новой смежной точке, т.е. новому составу базисных и небазисных переменных) и осуществляется переход к шагу 1.

Строим симплекс таблицу:


Базис

Решение Оценка Z

0

0 0 0 0 0 0

-2

1

0 1 0 0 0 0 0 0 0 0 0 6 6

1 0 0 0 0 0 0 1 0 0 0 0 0 6 -

0 1 0 0 0 0 0 0 1 0 0 0 0 7 7

1 7 -1 0 0 0 0 0 0 1 0 0 0 7

1

2 5 0 0 -1 0 0 0 0 0 1 0 0 10 2

5 2 0 0 0 -1 0 0 0 0 0 1 0 10 5

7 1 0 0 0 0 -1 0 0 0 0 0 1 7 7

- ведущий столбец

- ведущая строка


Из числа текущих небазисных переменных выбирается включаемая в новый базис переменная, увеличение которой обеспечивает улучшение целевой функции

Для определения нового базисного решения (шаг 3) воспользуемся методом Гаусса-Жордана:

А) новая ведущая строка = предыдущая ведущая строка / ведущий элемент;

Б) новое уравнение = предыдущему уравнению – {старый коэффициент ведущего столбца, соответствующий искомому уравнению * новую ведущую строку}

Новая симплекс – таблица будет иметь следующий вид:


Базис

Решение Оценка Z

0

0

0 0

0 0 0

0

1 0 0 0 0 0

0 0 0 5 -

1 0 0 0 0 0 0 1 0 0 0 0 0 6 6

0

0 0 0 0 0 1

0 0 0 6 -

1

0 0 0 0 0 0

0 0 0 1 7

0

0 -1 0 0 0 0

1 0 0 5

0

0 0 -1 0 0 0

0 1 0 8

0

0 0 0 -1 0 0

0 0 1 6

- ведущий столбец

- ведущая строка


В столбцах векторов, входящих в базис, на пересечении строк и столбцов одноименных векторов проставляются единицы, а все остальные элементы данных столбцов полагают равными нулю.

В состав таблицы входят столбцы для базисных переменных и всех переменных, входящих в целевую функцию и ограничения, и, кроме того, столбец решений и отношений. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Концепция управления совокупным риском на уровне предприятия через изменение соотношения переменных и постоянных затрат
Просмотров:64
Описание: Концепция управления совокупным риском на уровне предприятия через изменение соотношения переменных и постоянных затрат Ушакова Н.В. Калугин А.В. Ерина Т.Ю. Ушаков Е.А. Ст

Название:Сущность постоянных и переменных затрат. Использование маржинального дохода в целях обоснования управленческих решений об ассортименте продукции
Просмотров:77
Описание: ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССОНИЛЬНОГО ОБРАЗОВАНИЯ ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ Кафедра бухгалтерского уч

Название:Минимум функции многих переменных
Просмотров:129
Описание: РЕФЕРАТ В работе рассматриваются методы нахождения минимума функции одной переменной и функции многих переменных. Пояснительная записка к курсовой работе состоит из двух основных частей: теоретической и

Название:Минимизация функции многих переменных. Приближённые численные методы. Метод Монте-Карло
Просмотров:127
Описание: Минимизация функции многих переменных. Приближённые численные методы. Метод Монте-Карло 1. Минимизация функции многих переменных. Аналитические методы. Теорема Вейерштрасса: пусть - м

Название:Планирование как ведущая функция управления
Просмотров:121
Описание: 1. Планирование как ведущая функция управления Функция планирования является ведущей в процессе управления организацией, предприятием, корпорацией. Она осуществляется менеджерским корпусом для определения

 
     

Вечно с вами © MaterStudiorum.ru