MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Лекции переходящие в шпоры Алгебра и геометрия

Название:Лекции переходящие в шпоры Алгебра и геометрия
Просмотров:98
Раздел:Математика
Ссылка:Скачать(82 KB)
Описание: 1. Матрицы. Терминология и обозначения.
Матрицей размера (mxn) называется набор m(n чисел – элементов м-цы Ai,j, записанных в виде прямоугольной таблицы:
[pic]
Набор аi1, ai2, ain – наз iтой строко

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

1. Матрицы. Терминология и обозначения. Матрицей размера (mxn) называется набор m?n чисел - элементов м-цы Ai,j, записанных в виде прямоугольной таблицы: Набор аi1, ai2, ain - наз iтой строкой м-цы. Набор a1j, a2j, amj - jтым столбцом. М-ца размером 1хп - называется строкой, вектором; м-ца размером mx1 - столбцом. Если размерность пхп - матрица называется квадратной. Набор элементов а11, а22, апп образует главную диагональ м-цы. Набор а1п, а1,п-1, ап1 - побочную диагональ. М-ца все эл-ты, которой = 0 наз. нулевой. Квадратная м-ца, элементы главной диагонали которой равны 1, а все остальные - 0, называется единичной, обозн.: Е Матрицы: А(I,j) и B(I,J) называется равными, если равны их размеры и их элеме6нты в одинаковых позициях совпадают. 2. Действия с матрицами 1) Сложение Суммой м-ц А(I,j) и B(I,J) наз. м-ца С(I,J) элементы кот, выч по формуле: Сij=Aij+Bij (I=1...m, j = 1...n) C=A+B (размер всех м-ц: mxn) 2) умножение м-цы на число Произведение м-цы А = (Aij) размера mxn на число С называется матрица: B=(Bij) размера mxn, элементы кот, выч. по формуле: Вij=С?Aij (I=1...m, j = 1...n) В=С?А вычитание: С=А+(-)В = А-В 3) умножение м-ц А=(Aik), B=(Bkj) - квадратные м-цы порядка n. Произведением А на В называют м-цу С= (Сij) элементы, кот выч. по формуле: Сij = Ai1?B1j+... Ain?BnJ С=АВ. Можно записать так: Порядок сомножителей в матрице существенен: АВ не равно ВА Св-ва умножения м-цы: (АВ)С=А(ВС) А(В+С)=АВ+АВ, (А+В)С=АС+ВС Произведение двух прямоугольных матриц существует, если их внутренние размеры (число столбцов первой, и число строк второй) равны. 3. Порядки суммирования. Транспонирование м-цы Сумму Н всех элементов квадратной м-цы А можно вычислить 2 мя способами: 1. Находя сумму элементов каждого столбца и складывая полученные суммы: 2. Находя сумму элементов каждой строки и складывая эти суммы: отсюда вытекает, что порядок суммирования в двойной сумме можно менять. Матрица называется транспонированной по отношению к м-це А= Обозначается АТ. При транспонировании строки переходят в столбцы, а столбцы в строки и если А размером mxn, то АТ будет размером nxm Св-ва операции транспонирования. 1 (АТ)Т=А 2 (А+В)Т=АТ+ВТ 3 (СА)Т=САТ (С-число) 4 (АВ)Т=АТ?ВТ 4. Элементарные преобразования матрицы. 1 Переставление двух строк 2 Умножение строки на не равное 0 число В 3 Прибавление к строке матрицы другой ее строки, умноженной на число С. Также производят элементарные преобразования столбцов. 5. Матрицы элементарных преобразований. С элементарными преобразованиями тесно связаны квадратные матрицы элементарных преобразований. Они бывают следующих типов: 1 м-цы получающиеся из единичных путем перестановки двух любых строк например м-ца: получена перестановкой 2 и 4 строки 2 тип. м-цы получающиеся из единичной заменой диагонального элемента на произвольное не нулевое число: отличается от единичной элементом В во второй строке 3 тип отличающиеся лишь одним недиагональным не нулевым элементом: Основное св-во матриц элементарных преобразований Элементарное преобразование произвольной матрицы равносильно умножению этой м-цы на матрицу элементарных преобразований Элементарные преобразования строк м-цы А 1 умножение м-цы А на м-цу 1 типа слева переставляет строки с номерами I,j 2 Умножение м-цы А на м-цу второго типа слева равносильно умножению j строки м-цы А на число В 3 прибавление к jстороке м-цы А ее iтой строки, умноженной на число С равносильно умножению м-цы А на м-цу 3 типа слева Элементарные преобразования столбцов м-цы А 1 умножение м-цы А на м-цу 1 типа справа переставляет столбцы с номерами I,j 2 Умножение м-цы А на м-цу второго типа справа равносильно умножению j столбца м-цы А на число В. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:140
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:147
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

Название:Система координат канви
Просмотров:123
Описание: Зміст Вступ Розділ 1. Теоретична частина 1.1 Компонент Image і деякі його властивості 1.2 Вивід зображень за допомогою пікселів 1.3 Збереження конфігурації в файлах .ini Розділ 2. Практична частина 2.1 Код гри

Название:Социологический анализ семьи в единстве структурных и динамических координат
Просмотров:86
Описание: Содержание 1. Социологический анализ семьи в единстве структурных и динамических координат. Семья как социальный институт и как социальная группа 2. Типология семейных структур и их основные разновидности.

Название:Анатомическая номенклатура. Основные оси и плоскости человеческого тела
Просмотров:404
Описание: План 1. Анатомическая номенклатура. Основные оси и плоскости человеческого тела  3 2. Верхняя боковая поверхность полушария, главные борозды и извилины. Локализация функций  связанных с нервной сигнальной с

 
     

Вечно с вами © MaterStudiorum.ru