MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Иностранный язык -> Lipid biosynthesis

Название:Lipid biosynthesis
Просмотров:56
Раздел:Иностранный язык
Ссылка:Скачать(11 KB)
Описание: LIPID BIOSYNT   Energy Storage Fatty acid synthesis is regulated, both in plants and animals. Excess carbohydrate and protein in the diet are converted into fat. Only a relatively small amount of energy is stored in animals as glycogen or other carbohydrates, and the level of glycogen is closely regulated. Protein storage doesn’t take place in animals. Except fo

Часть полного текста документа:

LIPID BIOSYNT

 

Energy Storage

Fatty acid synthesis is regulated, both in plants and animals. Excess carbohydrate and protein in the diet are converted into fat. Only a relatively small amount of energy is stored in animals as glycogen or other carbohydrates, and the level of glycogen is closely regulated.

Protein storage doesn’t take place in animals. Except for the small amount that circulates in the cells, amino acids exist in the body only in muscle or other protein-containing tissues. If the animal or human needs specific amino acids, they must either be synthesized or obtained from the breakdown of muscle protein. Adipose tissue serves as the major storage area for fats in animals. A normal human weighing 70 kg contains about 160 kcal of usable energy. Less than 1 kcal exists as glycogen, about 24 kcal exist as amino acids in muscle, and the balance-more than 80 percent of the total-exists as fat. Plants make oils for energy storage in seeds. Because plants must synthesize all their cellular components from simple inorganic compounds, plants-but usually not animals-can use fatty acids from these oils to make carbohydrates and amino acids for later growth after germination.

 

Fatty Acid Biosynthesis

The biosynthetic reaction pathway to a compound is usually not a simple opposite of its breakdown. Chapter 12 of Volume 1 discusses this concept in regard to carbohydrate metabolism and gluconeogenesis. In fatty acid synthesis, acetyl-CoA is the direct precursor only of the methyl end of the growing fatty acid chain. All the other carbons come from the acetyl group of acetyl-CoA but only after it is modified to provide the actual substrate for fatty acid synthase, malonyl-CoA.

Malonyl-CoA contains a 3-carbon dicarboxylic acid, malonate, bound to Coenzyme A. Malonate is formed from acetyl-CoA by the addition of CO2 using the biotin cofactor of the enzyme acetyl-CoA carboxylase.

HCO3

– Acetyl-CoA + HCO3

– + ATP Malonyl-CoA + ADP + Pi

Formation of malonyl-CoA is the commitment step for fatty acid synthesis, because malonyl-CoA has no metabolic role other than serving as a precursor to fatty acids.

Fatty acid synthase (FAS) carries out the chain elongation steps of fatty acid biosynthesis. FAS is a large multienzyme complex. In mammals, FAS contains two subunits, each containing multiple enzyme activities. In bacteria and plants, individual proteins, which associate into a large complex, catalyze the individual steps of the synthesis scheme.

Initiation

Fatty acid synthesis starts with acetyl-CoA, and the chain grows from the “tail end” so that carbon 1 and the alpha-carbon of the complete fatty acid are added last. The first reaction is the transfer of the acetyl group to a pantothenate group of acyl carrier protein (ACP), a region of the large mammalian FAS protein. (The acyl carrier protein is a small, independent peptide in bacterial FAS, hence the name).

The pantothenate group of ACP is the same as is found on Coenzyme A, so the transfer requires no energy input: Acetyl~S-CoA + HS-ACP® HS-CoA + Acetyl~S-ACP.

In the preceding reaction, the S and SH refer to the thio group on the end of Coenzyme A or the pantothenate groups. The ~ is a reminder that the bond between the carbonyl carbon of the acetyl group and the thio group is a “high energy” bond (that is, the activated acetyl group is easily donated to an acceptor). The second reaction is another transfer, this time, from the pantothenate of the ACP to cysteine sulfhydral (–SH) group on FAS.

Acetyl~ACP + HS-FAS ® HS-ACP + Acetyl~S-FAS

Note that at this point, the FAS has two activated substrates, the acetyl group bound on the cysteine –SH and the malonyl group bound on the pantothenate –SH. Transfer of the 2-carbon acetyl unit from

Acetyl~S-cysteine to malonyl-CoA has two features:

Release of the CO2 group of malonyic acid that was originally

put on by acetyl-CoA carboxylase

Generation of a 4-carbon b-keto acid derivative, bound to the pantothenate of the ACP protein

The ketoacid is now reduced to the methylene (CH2) state in a

three-step reaction sequence.

The elongated 4-carbon chain is now ready to accept a new 2-carbon unit from malonyl-CoA. The 2-carbon unit, which is added to the growing fatty acid chain, becomes carbons 1 and 2 of hexanoic acid (6-carbons).

Release

The cycle of transfer, elongation, reduction, dehydration, and reduction continues until palmitoyl-ACP is made. Then the thioesterase activity of the FAS complex releases the 16-carbon fatty acid palmitate from the FAS.

Note that fatty acid synthesis provides an extreme example of the phenomenon of metabolic channeling: neither free fatty acids with more than four carbons nor their CoA derivatives can directly participate in the synthesis of palmitate. Instead they must be broken down to acetyl-CoA and reincorporated into the fatty acid.

Fatty acids are generated cytoplasmically while acetyl-CoA is made in the mitochondrion by pyruvate dehydrogenase.This implies that a shuttle system must exist to get the acetyl-CoA or its equivalent out of the mitochondrion. The shuttle system operates in the following:

way: Acetyl-CoA is first converted to citrate by citrate synthase in the TCA-cycle reaction. Then citrate is transferred out of the mitochondrion by either of two carriers, driven by the electroosmotic

gradient: either a citrate/phosphate antiport or a citrate/malate antiport as shown in Figure 2-2.

Fatty acid biosynthesis (and most biosynthetic reactions) requires NADPH to supply the reducing equivalents. Oxaloacetate is used to generate NADPH for biosynthesis in a two-step sequence.

The first step is the malate dehydrogenase reaction found in the TCA cycle. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Lipid biosynthesis
Просмотров:56
Описание: LIPID BIOSYNT   Energy Storage Fatty acid synthesis is regulated, both in plants and animals. Excess carbohydrate and protein in the diet are converted into fat. Only a relatively small amount of energy is stored in animals as glycogen or other carbohydrates, and the level of glycogen is closely regulated. Protein storage doesn’t take place in animals. Except fo

Название:Methylotrophic biomass as 2H-labeled substrate for biosynthesis of inosine
Просмотров:226
Описание: Methylotrophic biomass as 2H-labeled substrate for biosynthesis of inosine Oleg V. Mosin1 1 M. V. Lomonosov State Academy of Fine Chemical Technology, Vernadskogo Prospect 86, Moscow, 117571  Abstract             It was proposed to use the 2H-labeled hydrolysate of RuMP facultative methylotroph Brevibacterium methylicum, obtained from deuterated salt med

 
     

Вечно с вами © MaterStudiorum.ru