MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Философия -> Логический анализ E-структур с помощью графов

Название:Логический анализ E-структур с помощью графов
Просмотров:92
Раздел:Философия
Ссылка:Скачать(57 KB)
Описание: Логический Анализ E-структур с помощью графов Использование графов и у-множеств при логическом выводе в E-структурах позволяет не только упростить процесс получения следстви

Часть полного текста документа:

Логический Анализ E-структур с помощью графов

Использование графов и у-множеств при логическом выводе в E-структурах позволяет не только упростить процесс получения следствий, но и выполнить другие методы логического анализа рассуждений.

Первое, что сделаем – это представим рассуждение в виде ориентированного графа, в котором отношения включения между множествами представлены как дуги, соединяющие соответствующие литералы. При этом будем считать, что дуги могут быть любой длины и необязательно прямыми. Рассмотрим посылки из условного примера:

1) CÍ;

2) TÍR;

3) Í.

Далее возьмем чистый лист бумаги и выпишем на некотором расстоянии друг от друга все базовые термины нашего рассуждения. При этом мы расположим термины в двух строках: в верхней строке будут все «позитивные» термины (C, S, T, R), а в нижней – все «негативные» термины (, , , ). Кроме того, альтернативные (т.е. отрицающие друг друга) термины (например, S и ) мы расположим строго на одной вертикали. Затем соединим некоторые термины дугами в соответствии с нашими посылками. Тогда получим ориентированный граф, с помощью которого изображается исходная задача (рисунок 1).

 

           Рис. 1                     Рис. 2


Теперь для каждой посылки мы построим новую дугу, которая будет изображать следствие, полученное с помощью правила контрапозиции. Наш граф дополнится еще тремя дугами (рисунок 2). Правила рисования контрапозиций для нашей схемы весьма просты и соответствуют некоторым принципам симметрии. Сформулируем эти правила:

1) если исходная дуга соединяет литералы в одной строке, то ее контрапозиция должна соединять противоположные литералы на другой строке, при этом дуга должна быть направлена в сторону, противоположную исходной дуге. Например, для дуги ® мы по этому правилу получаем новую дугу R ® S;

2) если исходная дуга наклонная (т.е. соединяет разные строки), то при построении ее контрапозиции мы соединяем линией противоположные литералы (например, для дуги C® надо соединить линией литералы  и S). После этого надо выбрать такое направление линии (вверх или вниз), чтобы это направление совпадало с направлением исходной дуги. Например, пара литералов на схеме соединяется дугой S ®, так как в этом случае стрелка направлена вниз, так же как и исходная стрелка C® на схеме.

Дуги со строго вертикальным направлением в нашем примере не появятся. Забегая вперед, отметим, что такие дуги, если они появляются в процессе логического вывода, говорят о том, что в нашем рассуждении содержится коллизия парадокса.

Теперь, когда получены все следствия по правилу контрапозиции, можно приступать к получению новых следствий по правилу транзитивности. Если использовать схему, то этот процесс существенно упрощается. Для этого надо просто построить все пути, содержащиеся в полученном графе (рисунок 2). Сначала надо выбрать литералы, из которых будут строиться эти пути. Начинать нужно с минимальных литералов, т.е. с таких литералов на схеме, в которые не входит ни одна дуга. На схеме имеется два таких литерала: C и T. Построив пути из них, получим

Путь 1: C ® ®  ® ; Путь 2: T ® R ® S ®.

Выберем какую-либо произвольную вершину графа (например, R) и выделим те вершины графа, которые достижимы из R. Для нашего примера из вершины R достижимы вершины S и .

Теперь, если мы сопоставим понятие достижимости с правилом транзитивности в наших правилах вывода, то придем к следующему правилу, позволяющему получать на наших схемах новые следствия:

Если на схеме вершина Z достижима из вершины Y, то связь Y®Z является либо исходной посылкой, либо следствием нашего рассуждения, полученном по правилу транзитивности.

Посмотрев теперь на рисунок 2, нетрудно убедиться, что все следствия C4 – C9 могут быть также получены с помощью правила достижимости. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Аналіз структурних властивостей зображень
Просмотров:157
Описание: Аналіз структурних властивостей зображень 1. Мета і методи аналізу й автоматичної обробки зображень Необхідно розрізняти обробку зображень, призначених для зорового сприйняття, і обробку в пристроях ав

Название:Характеристика структуры, понятия и принципов государственного аппарата и функций ветвей власти в системе механизма государства
Просмотров:88
Описание: Содержание Введение Глава I. Понятия государственного аппарата и механизма государства 1. Соотношение государственного аппарата с механизмом государства 2. Механизм государства как организация государс

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:266
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

Название:Язык Paskal. Основные элементы языка. Структура программы
Просмотров:84
Описание: Содержание   Введение 1. Структура программы 2. Алфавит языка 3. Простейшие конструкции 4. Выражения 5. Типы данных 6. Операции Заключение Литература     Введение Тема реферата "Я

Название:Структурно-функціональні особливості наднирників людини на різних етапах онтогенезу
Просмотров:159
Описание: Міністерство освіти та науки України Прикарпатський національний університет імені Василя Стефаника Інститут природничих наук Кафедра біології та екології Зав. кафедри д.б.н. проф. В.І.Парпан

 
     

Вечно с вами © MaterStudiorum.ru