MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Логический вывод на основе нечеткой метаимпликации

Название:Логический вывод на основе нечеткой метаимпликации
Просмотров:129
Раздел:Информатика, программирование
Ссылка:Скачать(39 KB)
Описание:В работе подробно рассмотрена суть логического вывода на основе нечеткой метаимпликации, с помощью примеров показана максиминная свертка нечетких отношений, используемая в моделях принятия решений и при распознавании нечетких образов.

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Логический вывод на основе нечеткой метаимпликации
    О.А. Мелихова
    В работе подробно рассмотрена суть логического вывода на основе нечеткой метаимпликации, с помощью примеров показана максиминная свертка нечетких отношений, используемая в моделях принятия решений и при распознавании нечетких образов.
    При выполнении нечетких выводов используются нечеткие соответствия R, заданные между одной проблемной областью (множество X) и другой областью (множество Y) в виде нечеткого подмножества прямого произведения , определяемого по формуле [7,13]:
    , (1.1)
    где область отправления, область прибытия, функция принадлежности нечеткому соответствию R, а знак означает совокупность (объединение) множеств.
    Если существует правило типа "если A, то B", использующее нечеткие множества A и B , то один из способов построения нечеткого соответствия R состоит в следующем:
    
    или
    , (1.2)
    где функции принадлежности элементов x, y соответственно множествам A и B.
    Пример 1. Пусть X и Y- области натуральных чисел от 1 до 4. Определим следующим образом нечеткие множества: A= "маленькие", B= "большие".
    X=Y={1,2,3,4}, т.е. для примера взят частный случай соответствия- отношение на множестве {1,2,3,4}:
    .
    Для примера "если x маленькое, то y большое" (или , где знак означает операцию нечеткой метаимпликации) можно построить нечеткое отношение R следующим образом:
    
     y1 y2 y3 y4 x1 0 0,1 0,6 1 R= x2 0 0,1 0,6 0,6 x3 0 0,1 0,1 0,1 x4 0 0 0 0
    В качестве элементов матрицы R записаны значения , вычисленные по формуле (1.2).
    Для свертки нечетких отношений чаще выбирается свертка max-(min (максиминная композиция). Пусть R нечеткое соответствие множества X и множества Y, а S нечеткое соответствие множества Y и множества V. Тогда нечеткое соответствие между X и V определяется как свертка (композиция) , где
    
    или
    . (1.3)
    Пример 2. Пусть и заданы нечеткие множества A = "не маленькие", H = "очень большие", где
    .
    Тогда для правила "если y не маленькое, то v очень большое" (или ), в соответствии с формулой (1.2) нечеткое соответствие S определяется как
    
     v1 v2 v3 v4 y1 0 0 0 0 S= y2 0 0 0,4 0,4 y3 0 0 0,5 0,9 y4 0 0 0,5 1
    Если теперь по формуле (1.3) вычислить свертку max-min с нечетким отношением R, полученным в примере 1.1, то из двух отношений:
    если x маленькое, то y большое,
    если y не маленькое, то v очень большое
    можно построить нечеткое отношение из X в V.
    
    
     y1 y2 y3 y4 v1 v2 v3 v4 x1 0 0,1 0,6 1 y1 0 0 0 0 = x2 0 0,1 0,6 0,6 y2 0 0 0,4 0,4 = x3 0 0,1 0,1 0,1 y3 0 0 0,5 0,9 x4 0 0 0 0 y4 0 0 0,5 1 v1 v2 v3 v4 x1 0 0 0,5 1 = x2 0 0 0,5 0,6 x3 0 0 0,1 0,1 x4 0 0 0 0
    Модель принятия решений на основе композиционного правила вывода описывает связь всех возможных состояний сложной системы с управляющими решениями. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Элементы теории множеств
Просмотров:149
Описание: Федеральное агентство по образованию ФГОУ ВПО Чувашский государственный университет им. И.Н. Ульянова Алатырский филиал Факультет управления и экономики Кафедра высшей математики и информационных тех

Название:Проблема кровотечений при множественных и сочетанных повреждениях
Просмотров:259
Описание: Ирина ГРИДЧИК, профессор. Евгений БОРИСОВ, доцент. Николай ШИПКОВ,  доцент. Кафедра травматологии Российской медицинской академии последипломного образования. Проблема кровотечений - одна из самых острых и злобо

Название:Проверка истинности моделей множественной регрессии
Просмотров:228
Описание: Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И.И. ПОЛЗУНОВ

Название:Множества. Операции над множествами
Просмотров:126
Описание: РЕФЕРАТ Множества. Операции над множествами СОДЕРЖАНИЕ Способы задания множества Включение и равенство множеств Диаграммы Эйлера-Венна Операции над множествами а) Об

Название:Множественность преступлений
Просмотров:97
Описание: Множественность преступлений План: 1. Общая характеристика института множественности 2. Единичное преступление 3. Неоднократность преступлений 4. Совокупность преступлений 5

 
     

Вечно с вами © MaterStudiorum.ru