СОДЕРЖАНИЕ
I. Теоретические сведения по теме «Признаки равенства треугольников».….3
II. Методика изучения темы «Признаки равенства треугольников»
УРОК 1. Тема урока «Треугольник. Виды треугольников»…………………….…..8
УРОК 2. Тема урока: «Свойства равнобедренного и равностороннего треугольников» ……………………………………………………………………….11
УРОК 3. Тема урока: «Построение треугольников. Равенство треугольников» ..15
УРОК 4. Тема урока: «Признаки равенства треугольников» ..................................18 УРОК 5. Тема урока: “Решение прикладных задач» ................................................22 УРОК 6. Обобщающий урок по теме «Признаки равенства треугольников»……26 Приложения к урокам………………………………………………………………...30
Перечень использованной литературы……………………………………………...33
I. Теоретические сведения по теме «Признаки равенства треугольников»
Признаки равенства треугольников
Первый признак
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
Справочная таблица.
Теорема 1 (признак равенства треугольников по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство.
Пусть у треугольников АВС и А1В1С1 Ð А = Ð А1, АВ=А1В1, АС=А1С1. Докажем, что треугольники равны, т.е. докажем, что у них и ÐВ=ÐВ1, ÐС=ÐС1, ВС=В1С1.
По аксиоме существования треугольника, равного данному, существует треугольник А1В2С2, равный треугольнику АВС, у которого вершина В2 лежит на луче А1В1, а вершина С2 лежит одной полуплоскости с вершиной С1 относи-тельно прямой А1В1. Так как А1В1=А1В2, то по аксиоме откладывания отрезков точка В2 совпадает с точкой В1. Так как ÐВ1А1С1=ÐВ2А1С2, то по аксиоме откладывания углов луч А1С2 совпадает с лучом А1С1. И так как А1С1=А1С2, то вершина С2 совпадает вершиной С1. Итак, треугольник А1В1С1 совпадает с треугольником А1В2С2, а значит, равен треугольнику АВС. Теорема доказана.
Теорема 2 (признак равенства треугольников по стороне и прилежащим к ней углам). Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Доказательство.
Пусть АВС и А1В1С1 – два треугольника, у которых Ð А = Ð А1, ÐВ=ÐВ1, АВ=А1В1. Докажем, то треугольники равны, т.е. докажем, что АС=А1С1, ÐС=ÐС1, ВС=В1С1. По аксиоме существования треугольника, равного данному, существует треугольник А1В2С2 равный треугольнику АВС, у которого вершина В2 лежит на луче А1В1, а вершина С2 лежит в одной полуплоскости вершиной С1 относительно прямой А1В1. ............