Содержание
Введение
Методы путевого анализа и их применение к системам одновременных уравнений
1.Метод Райта путевого анализа
2. Основная теорема путевого анализа
3. Процедура Саймона-Блейлока
Заключение
Список используемой литературы
Введение
Методы корреляций и регрессий создавались как методы описания совместных изменений двух и более переменных. Совместные изменения переменных могут не означать наличия причинных связей между ними. Потребность в причинном объяснении корреляции привела американского генетика С. Райта к созданию метода путевого анализа (1910—1920) как одного из разновидностей структурного моделирования. Путевой анализ основан на изучении всей структуры причинных связей между переменными, т. е. на построении графа связей и изоморфной ему рекурсивной системы уравнений. Его основным положением является то, что оценки стандартизированных коэффициентов рекурсивной системы уравнений, которые интерпретируются как коэффициенты влияния (путевые коэффициенты), рассчитываются на основе коэффициентов парной корреляции. Это позволяет проанализировать структуру корреляционной связи с точки зрения причинности. Каждый коэффициент парной корреляции рассматривается как мера полной связи двух переменных.
Путевой анализ позволяет разложить величину этого коэффициента на четыре компоненты.
Таким образом, путевой анализ С. Райта, так же как и структурные модели, позволил прояснить проблему ложной корреляции, которой занимались многие видные статистики, начиная с К. Пирсона (1857-1936).
Методы путевого анализа и их применение к системам одновременных уравнений
1. Метод Райта путевого анализа
Метод путевого анализа (или путевых коэффициентов) предложен в 20-х гг. XX в. американским генетиком С. Райтом. Сегодня этот метод нашел широкое применение в биометрии построении социологических причинных моделей, но все еще остается мало знакомым экономистам. Основные положения метода сводятся к следующему. Пусть x1, x2, ...., xp — случайные переменные, измеренные в соответствующих единицах. Основным предположением метода является предположение об аддитивности и линейности связей между переменными. (1)
Здесь xui — символ неизмеримого имплицитного фактора ui, действующего на хi, и обозначающего действие на хi всех переменных, не включенных во множество {xj}; gij - некоторые константы; giu — коэффициент влияния xui на xi.
Будем называть xj j-й причиной, а хi — следствием комбинированного действия всех m-причин. Использование линейных зависимостей между всеми переменными делает р-анализ специальным случаем регрессионного анализа, в котором коэффициенты регрессии интерпретируются в терминах причинно-следственных отношений.
Соотношение (1) можно записать также в виде (2)
где xj – среднее значение j-й переменной
Без потери общности можно допустить, что xiu имеет нулевое среднее и единичную дисперсию. В стандартизованной форме уравнение (2) будет иметь вид: (3)
где, Sj – стандартное отклонение j-й переменной.
Тогда pij = (sj/si)cij.
Коэффициенты cij являются специальным типом частных коэффициентов регрессии. Коэффициент pij является стандартизованным коэффициентом p-регрессии. Будем называть pij коэффициентом влияния (согласно С. ............