Министерство образования и науки Украины
Севастопольский национальный технический университет
Факультет Экономики и менеджмента
Кафедра менеджмента и экономико - математических методов
Отчёт по лабораторной работе №4
По дисциплине: «Прикладная статистика»
На тему: «Однофакторный регрессионный анализ при помощи системы GRETL»
Вариант 1
Целью данной работы является научиться применять теоретические знания по теме «Одномерный регрессионный анализ» при решении экономических задач с помощью системы GRETL.
Задание 1
Компания «Лагуна», которая обеспечивает стеклянными бутылками множество изготовителей безалкогольных напитков, обладает следующей информацией, относящейся к числу ящиков при одной отгрузке и соответствующим транспортным затратам (см. Таблицу 1).
Таблица 1 ‑ Данные к заданию 1
Число ящиков на отгрузку Транспортные затраты в гривнах Вар 3
150 6532
220 9771
350 15227
430 17575
580 23998
650 27800
730 29466
820 35447
850 34420
980 42188
Проведите анализ затрат в зависимости от числа ящиков к разгрузке. Представьте экономическое обоснование результатов регрессионного анализа. Спрогнозируйте сумму затрат при росте отгрузки до 1000 ящиков.
Решение:
Допустим, что транспортные затраты зависят от числа ящиков на отгрузку. Для проверки этого построим график зависимости и рассчитаем коэффициент корреляции, составив корелляционную матрицу.
Далее построим регрессионные модели вида: и , где – число ящиков (шт.), – транспортные затраты (грн).
Наши данные в системе gretl:
1. Построим сначала регрессионную модель вида
В зависимую переменную выбираем cost_var3, в независимую оставляем const и добавляем num_y.
Уравнение регрессии в данном случае: y = 192,181+41,7539x1
Так как р-значение (вероятность ошибки) меньше 0,05, то принимается альтернативная гипотеза, и коэффициент регрессии значим, то есть число ящиков существенно отражается на транспортные затраты.
Сумма квадратов ошибок и стандартная ошибка регрессии отражают степень разброса фактических значений от расчетных, полученных по модели, то есть чем меньше сумма квадратов ошибок и стандартная ошибка регрессии, тем точнее модель.
В нашем случае, модель не совершенно точно отражает.
Так как вычисленное значение p<α, то принимаем альтернативную гипотезу о значимости влияния числа ящиков на транспортные затраты.
Построим график фактических данных и расчетных в окне model через путь: графики – fitted,actual plot – в зависимости от num_y.
График показывает, что транспортные затраты возрастают с увеличением числа ящиков к разгрузке.
2. Построим регрессионную модель вида аналогичным путем:
Стандартная ошибка регрессии достаточно высока в сравнении со средним значением зависимой переменной.
Коэффициент детерминации 99% выше, чем у 1 модели, что свидетельствует о высокой степени соответствия построений модели исходными данными.
На основе регрессионного анализа 2 модели вида y = 42,0288x при уровне значимости в 5% принимаем альтернативную гипотезу о существенном влиянии числа ящиков на транспортные затраты.
Для выбора модели составим таблицу статистических оценок уравнения регрессии и сравним критерии качества регрессионного уравнения и в первом и во втором случае:
Таблица 2 –
Статистические оценки регрессионных моделей
Значимость коэффициентов по критерию Стъюдента значим значимы Адекватность регрессионного уравнения по критерию Фишера адекватно адекватно Стандартная ошибка регрессии 840,721 887,157 Коэффициент детерминации 0,99911 0,99429 Log-likelihood -81,0052 -80,9539 AIC 164,01 165,908 BIC 164,313 166,513 HQC 163,678 165,244
Анализируя характеристики двух моделей, можно прийти к выводу о том, что в первой модели коэффициент детерминации выше, более того, в этой модели меньше ошибка и лучше показатели качества регрессионного уравнения. ............