Міністерство освіти і науки України
Дніпропетровський національний університет ім. Олеся Гончара
КОНТРОЛЬНА РОБОТА
з дисципліни „Диференціальні рівняння"
на тему „Особливі точки”
Виконавець: студентка групи
Назаренко Олеся
Перевірив:
м. Дніпропетровськ 2010 р.
Зміст
1. Особливі точки
2. Задача 1
3. Задача 2
4. Задача 3.
5. Задача 4
1. Особливі точки Особливою точкою системи
(1)
або рівняння
(2)
де функції й неперервно диференційовані, називається така точка, в якій .
Для дослідження особливої точки системи
(3)
або рівняння
(4)
треба знайти розв’язок характеристичного рівняння
(5)
Якщо розв’язки дійсні, різні й одного знаку , то особлива точка - вузол (рис.1, а), причому стійкий, якщо й нестійкий, якщо .
Вузол характеризується тим, що всі траєкторії, крім однієї II, мають у точці (0,0) загальну дотичну I, що сама є траєкторією. Прямі I і II спрямовані вздовж власних векторів матриці , які відповідають і , причому пряма I відповідає меншому за модулем з і .
При вузол є стійкою точкою спокою. На рис.1а стрілками показаний напрямок руху вздовж траєкторії при зростанні у випадку стійкого вузла. Якщо , то вузол нестійкий і стрілки заміняються на протилежні.
Рис.1. Типові траєкторії [2]
Якщо розв’язки дійсні, різні й різних знаків , то особлива точка - сідло (рис.1, б). Сідло є нестійкою точкою спокою.
Сідло характеризується наявністю двох траєкторій I і II, що проходять через (0,0) також у напрямку власних векторів. Пряма I є асимптотою для інших траєкторій при , а II є асимптотою при . Прямолінійна траєкторія I розташована за напрямком власного вектора, що відповідає додатньому , а прямолінійна траєкторія II за напрямком власного вектора, що відповідає від‘ємному . Прямі I і II називаються сепаратрисами сідла. На рис.1б стрілками показаний напрямок руху вздовж траєкторії при зростанні . Сепаратриса II є єдиною траєкторією, якій відповідає розв’язок, що прямує до 0 при . Тільки дві траєкторії I і II є прямолінійними. Інші траєкторії криволінійні й зі зростанням йдуть із в . Сепаратриси I і II розділяють фазову площину на 4 області, у яких лежать криволінійні траєкторії.
Якщо розв’язки комплексні з дійсною частиною , відмінною від нуля, то особлива точка - фокус (рис.1, в), причому стійкий, якщо й нестійкий, якщо . На рис.1в стрілками показаний напрямок руху при зростанні у випадку стійкого фокуса.
Зауваження. У випадку фокуса траєкторії можуть бути закручені навколо (0,0) у різних напрямках. Для того, щоб визначити напрямок закручування, досить обчислити вектор швидкості в якій-небудь точці, наприклад, в (0,1). Аналогічно досліджується напрямок руху у випадку центра й виродженого вузла.
Якщо розв’язки комплексні чисто мнимі (), то особлива точка - центр (рис.1, г). Центр є стійкою, але не асимптотично стійкою точкою спокою.
Якщо розв’язки рівні й ненульові (тобто ), то особлива точка може бути виродженим вузлом (рис.1, д) або дикритичним вузлом (рис.1, е), причому дикритичний вузол має місце тільки у випадку системи (або рівняння ), а у всіх інших випадках при особлива точка є виродженим вузлом. У випадку виродженого вузла всі траєкторії дотикаються однієї прямої, спрямованої вздовж єдиного власного вектора, що відповідає . ............