MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Практикум по решению линейных задач математического программирования

Название:Практикум по решению линейных задач математического программирования
Просмотров:68
Раздел:Информатика, программирование
Ссылка:Скачать(230 KB)
Описание: ПРАКТИКУМ ПО РЕШЕНИЮ ЛИНЕЙНЫХ ЗАДАЧ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ Введение Математическое программирование – это раздел математики, который изучает теорию и мет

Часть полного текста документа:

ПРАКТИКУМ

ПО РЕШЕНИЮ ЛИНЕЙНЫХ ЗАДАЧ

МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ


Введение

Математическое программирование – это раздел математики, который изучает теорию и методы поиска лучших вариантов планирования хозяйственной деятельности человека как на одном определенном предприятии, так и в некоторой отрасли или в отдельном регионе, или в целом государстве.

Лучшие варианты – это те, при которых достигается максимальная производительность труда, минимум себестоимости, максимальная прибыль, минимум использования ресурсов и т.д. С точки зрения математики – это класс оптимизационных задач. Основным инструментом при их решении является математическое моделирование. Математическая модель – это формальное описание изучаемого явления и «перевод» всех существующих сведений о нем на язык математики в виде уравнений, тождеств, неравенств. Если все эти соотношения линейные, то вся задача называется задачей линейного программирования (ЗЛП). Критерием эффективности этой модели является некоторая функция, которую называют целевой.

 


Постановка задачи линейного программирования и формы ее записи

Сформулируем общую задачу линейного программирования.

Пусть дана система m линейных уравнений и неравенств с n переменными (система ограничений):

                                  (1)

и линейная функция

.                                                        (2)

Необходимо найти такое решение  системы (1), при котором линейная функция принимает максимальное (минимальное) значение.

В общем случае ЗЛП может иметь бесконечное множество решений. Часто решение , удовлетворяющее ограничениям (1), называют планом. Если все компоненты  (3) для , то  называют допустимым решением.

Оптимальным решением или оптимальным планом задачи линейного программирования называется такое ее решение , которое удовлетворяет всем ограничениям системы (1), условию (3) и при этом дает максимум (минимум) целевой функции (2).


Каноническая

Стандартная

Общая

1) Ограничения

Уравнения

,

Неравенства

,

Уравнения и неравенства

,

2) Условия неотрицательности

Все переменные

,

Все переменные

,

Часть переменных

, ,

3) Целевая функция

 (max или min)

Здесь: – переменные задачи; – коэффициенты при переменных в целевой функции; – коэффициенты при переменных в основных ограничениях задачи; – правые части ограничений.

Пример. Составить экономико-математическую модель задачи: Для выпуска изделий двух типов А и В на заводе используют сырье четырех видов (I, II, III, IV). Для изготовления изделия А необходимо: 2 ед. сырья первого вида, 1 ед. второго вида, 2 ед. третьего вида и 1 ед. четвертого вида. Для изготовления изделия В требуется: 3 ед. сырья первого вида, 1 ед. второго вида, 1 ед. третьего вида. Запасы сырья составляют: I вида – 21 ед., II вида – 8 ед., III вида – 12 ед., IV вида – 5 ед. Выпуск одного изделия типа А приносит 3 УДЕ прибыли, а одного изделия типа В – 2 УДЕ. Составить план производства, обеспечивающий наибольшую прибыль.

Решение. Достаточно часто при составлении математической модели экономической задачи бывает удобно данные условия представить в виде таблицы:

Сырье Кол-во сырья на ед. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Нестандартные методы решения уравнений и неравенств
Просмотров:220
Описание: СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ИСТОРИЧЕСКАЯ СПРАВКА 2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ     2.1 Использование монотонности функции 2.2 Использование ограниченности функции 2.3 Использование перио

Название:Неравенства
Просмотров:226
Описание: Содержание   1)  Основное понятие неравенства 2)  Основные свойства числовых неравенств. Неравенства содержащие переменную. 3)  Графическое решение неравенств второй степени 4)  Системы нера

Название:Доказательства неравенств с помощью одномонотонных последовательностей
Просмотров:225
Описание: Муниципальное общеобразовательное учреждение Средняя общеобразовательная школа № 4 Секция: математика ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА по темеДоказательства неравенств с помощью одномонотонных последо

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:219
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

Название:Правовые гарантии равенства супругов в семье
Просмотров:49
Описание: Содержание 1. Теоретический вопрос 2. Задача-ситуация 3. Задание Список литературы 1. Теоретический вопрос Правовые гарантии равенства супругов в семье Между супругами из факта регистрации

 
     

Вечно с вами © MaterStudiorum.ru