MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Приближенное вычисление значений определенного интеграла

Название:Приближенное вычисление значений определенного интеграла
Просмотров:95
Раздел:Информатика, программирование
Ссылка:Скачать(113 KB)
Описание: Федеральное агентство по образованию РФ Тульский государственный университет Кафедра АОТ и ОС КУРСОВАЯ РАБОТА по курсу информатика "ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ОПРЕДЕЛЕНН

Часть полного текста документа:

Федеральное агентство по образованию РФ

Тульский государственный университет

Кафедра АОТ и ОС

КУРСОВАЯ РАБОТА

по курсу информатика

"ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА"

Тула, 2007


Содержание

Введение

Метод средних прямоугольников

Метод трапеций

Метод Ньютона-Котеса

Метод Чебышева

Блок-схема основной программы

Блок-схема процедуры: метод трапеций

Блок-схема процедуры: метод Ньютона-Котеса

Блок-схема процедуры: метод Чебышева

Текст программы

Список используемой литературы


Введение

На практике редко удается вычислить точно определенный интеграл. Например, в элементарных функциях не вычисляется функция Лапласа

широко используемая в теории вероятностей для вычисления вероятностей, связанных с нормально распределенными случайными величинами.

Задача численного интегрирования состоит в нахождении приближенного значения интеграла:

             (1)

от непрерывной на отрезке [a, b] функции .

Численные методы интегрирования применяются в случаях, когда не удается найти аналитическое выражение первообразной для функции  либо если функция  задана таблично. Формулы численного интегрирования называются квадратурными формулами.

Пример: Приближенное неравенство

        (2)

где qj – некоторые числа, xj – некоторые точки отрезка [a, b], называется квадратурной формулой, определяемой весами qj и узлами xj.

Говорят, что квадратурная формула точна для многочленов степени m, если при замене  на произвольный алгебраический многочлен степени m приближенное равенство (2) становится точным.

Рассмотрим некоторые широко используемые примеры приближенного вычисления определенных интегралов, квадратурные формулы.


Метод средних прямоугольников

Вычисление определенного интеграла геометрически означает вычисление площади фигуры, ограниченной кривой , прямыми х=а и х=b и осью абсцисс. Приближенно эта площадь равна сумме площадей прямоугольников.

Обозначим  , где

n – количество шагов.

Формула левых прямоугольников:

Формула правых прямоугольников:

Более точной является формула средних прямоугольников:


Метод трапеций

Площадь под кривой заменяется суммой площадей трапеций:

или

Нетрудно убедиться, что

Поскольку точность вычислений по приведенным формулам зависит от числа разбиений n исходного отрезка [a; b], то вычислительный процесс целесообразно строить итерационным методом, увеличивая n до тех пор, пока не будет выполнено условие

<

где  – значения интеграла на  шаге, а  – точность вычислений.


Метод Ньютона-Котеса

Заменим подынтегральную функцию f(x) интерполяционным многочленом Лагранжа:

 .

Тогда

;

                                               (1)

Так как dx=hdq, то

Так как , то

Окончательно получаем формулу Ньютона-Котеса:

                  (2)


Величины Hi называют коэффициентами Ньютона-Котеса. Они не зависят от f(x). Их можно вычислить заранее для различного числа узлов n (таблица 1).

Формула Ньютона-Котеса с n узлами точна для полиномов степени не выше n. Для получения большей точности не рекомендуется использовать формулы с большим числом узлов, а лучше разбивать отрезок на подотрезки, к каждому из которых применяется формула с одним и тем же небольшим числом узлов.

Таблица 1. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Время и парадоксы Ньютона
Просмотров:145
Описание: ВРЕМЯ И ПАРАДОКСЫ НЬЮТОНА   Является ли Вселенная единой и стройной системой, в которой действуют общие законы, или Вселенная это странное образование без фундаментальных констант и инвариантов, где все ме

Название:Взаимодействие тел и законы Ньютона
Просмотров:163
Описание: Взаимодействие тел Примеров взаимодействия тела можно привести сколько угодно. Когда вы, находясь в лодке, начнёте за веревку подтягивать другую, то и ваша лодка обязательно продвинется вперед. Действуя на в

Название:Механіка від Аристотеля до Ньютона
Просмотров:114
Описание:                                    Механіка від Аристотеля до Ньютона                   Основна  час

Название:Научные открытия Исаака Ньютона
Просмотров:88
Описание: 4 января 1643 года в деревушке Вулсторп в доме недавно скончавшегося фермера Ньютона родился мальчик. Ему дали имя отца – Исаак. Он пришел в мир в тот год, когда во Флоренции предали земле прах Галилея. Ньютон прожи

Название:Решение систем нелинейных алгебраических уравнений методом Ньютона
Просмотров:128
Описание: Решение систем нелинейных алгебраических уравнений методом Ньютона РЕФЕРАТ Пояснительная записка: 44 с., 14 рис, 2 таблицы, 3 источника, 4 прил. Данный продукт представляет собой программу, п

 
     

Вечно с вами © MaterStudiorum.ru