Федеральное агентство по образованию РФ
Тульский государственный университет
Кафедра АОТ и ОС
КУРСОВАЯ РАБОТА
по курсу информатика
"ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА"
Тула, 2007
Содержание
Введение
Метод средних прямоугольников
Метод трапеций
Метод Ньютона-Котеса
Метод Чебышева
Блок-схема основной программы
Блок-схема процедуры: метод трапеций
Блок-схема процедуры: метод Ньютона-Котеса
Блок-схема процедуры: метод Чебышева
Текст программы
Список используемой литературы
Введение На практике редко удается вычислить точно определенный интеграл. Например, в элементарных функциях не вычисляется функция Лапласа
широко используемая в теории вероятностей для вычисления вероятностей, связанных с нормально распределенными случайными величинами.
Задача численного интегрирования состоит в нахождении приближенного значения интеграла:
(1)
от непрерывной на отрезке [a, b] функции .
Численные методы интегрирования применяются в случаях, когда не удается найти аналитическое выражение первообразной для функции либо если функция задана таблично. Формулы численного интегрирования называются квадратурными формулами.
Пример: Приближенное неравенство
(2)
где qj – некоторые числа, xj – некоторые точки отрезка [a, b], называется квадратурной формулой, определяемой весами qj и узлами xj.
Говорят, что квадратурная формула точна для многочленов степени m, если при замене на произвольный алгебраический многочлен степени m приближенное равенство (2) становится точным.
Рассмотрим некоторые широко используемые примеры приближенного вычисления определенных интегралов, квадратурные формулы.
Метод средних прямоугольников Вычисление определенного интеграла геометрически означает вычисление площади фигуры, ограниченной кривой , прямыми х=а и х=b и осью абсцисс. Приближенно эта площадь равна сумме площадей прямоугольников.
Обозначим , где
n – количество шагов.
Формула левых прямоугольников:
Формула правых прямоугольников:
Более точной является формула средних прямоугольников:
Метод трапеций
Площадь под кривой заменяется суммой площадей трапеций:
или
Нетрудно убедиться, что
Поскольку точность вычислений по приведенным формулам зависит от числа разбиений n исходного отрезка [a; b], то вычислительный процесс целесообразно строить итерационным методом, увеличивая n до тех пор, пока не будет выполнено условие
<
где – значения интеграла на шаге, а – точность вычислений.
Метод Ньютона-Котеса Заменим подынтегральную функцию f(x) интерполяционным многочленом Лагранжа:
.
Тогда
;
(1)
Так как dx=hdq, то
Так как , то
Окончательно получаем формулу Ньютона-Котеса:
(2)
Величины Hi называют коэффициентами Ньютона-Котеса. Они не зависят от f(x). Их можно вычислить заранее для различного числа узлов n (таблица 1).
Формула Ньютона-Котеса с n узлами точна для полиномов степени не выше n. Для получения большей точности не рекомендуется использовать формулы с большим числом узлов, а лучше разбивать отрезок на подотрезки, к каждому из которых применяется формула с одним и тем же небольшим числом узлов.
Таблица 1. ............