MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Решение обыкновенных дифференциальных уравнений

Название:Решение обыкновенных дифференциальных уравнений
Просмотров:66
Раздел:Информатика, программирование
Ссылка:Скачать(40 KB)
Описание: Кафедра: Информационные Технологии Лабораторная Работа На тему: РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ   Москва, 2008 год РЕШЕНИЕ ОБЫКНОВ

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Кафедра: Информационные Технологии

Лабораторная Работа

На тему: РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

 

Москва, 2008 год


РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Цели работы:

· знать команды, используемые при решении обыкновенных дифференциальных уравнений в системе вычислений Maple;

· уметь применять указанные команды для решения математических задач.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Решение обыкновенных дифференциальных уравнений.

С помощью команды dsolve ( ) можно получить аналитическое решение дифференциального уравнения, а можно и сформировать процедуру построения численного решения задачи Коши, если система Maple не сможет найти общее решение в аналитическом виде. Наиболее общий синтаксис вызова команды решения дифференциального уравнения следующий:

dsolve (уравнения, неизвестные, [опции]);

Параметром уравнения задается одно дифференциальное уравнение или система дифференциальных уравнений. В последнем случае все уравнения системы должны быть представлены в виде множества (их список через запятую следует заключить в фигурные скобки). Параметр неизвестные определяет неизвестную функцию дифференциального уравнения или неизвестные функции системы дифференциальных уравнений, которые, как и сами уравнения системы, должны быть представлены в виде множества. Необязательный параметр опции, определяемый в виде ключевое_значение = значение, позволяет задать методы и форму представления решения.

Чтобы задать производную искомой функции в дифференциальном уравнении используют команду diff ( ) или оператор D, причем саму неизвестную функцию следует определять с явным указанием независимой переменной, например у(х). Оператор D определяет операцию дифференцирования и имеет следующий синтаксис:

(D@@n) (функция) (переменная);

В этой записи n представляет целое число, определяющее порядок производной, параметр функция – используемый идентификатор функции, а параметр переменная – независимую переменную функции. Например, производная второго порядка функции f (х) с использованием этого оператора задается так:

(D@@ 2) (f) (x);

Ниже представлены несколько примеров задания дифференциальных уравнений и систем дифференциальных уравнений:

> ex1:=diff(y(x),x$3)+k^2*y(x)=0;

> ex2:=(D@@3)(y)(x)+k^2*y(x)=cos(k1*x);

> sys1:={D(y1)(x)=a[1,1]*y1(x)+a[1,2]*y2(x),

D(y2)(x)=a[2,1]*y1(x)+a[2,2]*y2(x)};

Заметим, что в приведенных примерах и уравнения, и система уравнений сохраняются в переменных Maple. Как отмечалось ранее, это достаточно распространенный прием, позволяющий использовать в дальнейшем заданные уравнения простой ссылкой на обычную переменную.

Решим одно из известных уравнений:

> ex3:=diff(y(x),x$2)+k^2*y(x)=0;

> dsolve(ex3,y(x));

Найдено общее решение дифференциального уравнения, в котором переменные С1 и С2 – это сгенерированные Maple специальные переменные, представляющие произвольные константы общего решения дифференциального уравнения второго порядка. Этот пример показывает, что при отсутствии каких-либо опций система Maple пытается найти точное общее решение в явном виде. Если в явном виде решения не существует, то система попытается найти его в неявном виде, как видно из следующего примера:

> ex4:=diff(y(x),x)=-sqrt(x^2-y(x))+2*x;

> dsolve(ex4,y(x));

> isolate(%,y(x));

Команда isolate ( ) в этом примере выражает заданное вторым параметром выражение (у(х)) из уравнения, определяемого первым параметром (в нашем случае из неявного вида общего решения дифференциального уравнения).

По умолчанию команда dsolve ( ) сначала пытается найти общее реше­ние в явном виде, и если таковое не удается найти, то решение выдается в неявном виде (конечно, при условии его существования). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Отыскание корня уравнения методом половинного деления
Просмотров:77
Описание: Содержание   1. Индивидуальное задание 2. Постановка задачи и формализация 3. Выбор, обоснование, краткое описание методов 3.1 Численное интегрирование 3.1.1 Постановка задачи 3.1.2 Выбор и описание метода

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:231
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

Название:Интегрированный урок математики, русского языка, окружающего мира "Корень (уравнения, слова, растения)"
Просмотров:108
Описание: Конспект интегрированного урока математики, русского языка, окружающего мира «Корень (уравнения, слова, растения)» Цель урока: обобщить представления детей о понятии корень, используемом в таких предметных

Название:Использование разнообразных форм уроков при изучении темы "Квадратные уравнения" в 8 классе
Просмотров:89
Описание: ГОУ СПО "Кунгурское педагогическое училище" ПЦК преподавателей естественно-математических дисциплин Выпускная квалификационная работа по методике математики Использование разнообра

Название:Численное решение уравнения Шредингера средствами Java
Просмотров:148
Описание: Численное решение уравнения Шредингера средствами Java Содержание Введение 1. Уравнение Шредингера и физический смысл его решений 1.1 Волновое уравнение Шредингера 1.2 Волновые

 
     

Вечно с вами © MaterStudiorum.ru