MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Решение одного класса игр на матроидах

Название:Решение одного класса игр на матроидах
Просмотров:93
Раздел:Математика
Ссылка:Скачать(67 KB)
Описание:Коалиционные игры. Решения игр на матроидах разбиений.

Часть полного текста документа:

Решение одного класса игр на матроидах В.П. Ильев, И.Б. Парфенова, Омский государственный университет, кафедра прикладной и вычислительной математики 1. Коалиционные игры
    Игра есть математическая модель конфликта.Нас будут интересовать только такие конфликты, в которых допускается неограниченная кооперация его участников, вплоть до образования коалиций - устойчивых союзов для согласования действий в процессе выбора окончательного решения (исхода конфликта). Типичными примерами конфликтов являются выборы и законодательные процедуры.
    Дж.фон Нейман и О.Моргенштерн [1] предложили следующую модель, наиболее адекватно отражающую кооперативную сущность подобных конфликтов.
    Пусть - конечное множество, элементы которого называются игроками. Характеристической функцией (или коалиционной игрой) называется функция
     (1)
    Подмножества называются коалициями.
    Действительное число v(S) можно интерпретировать как потенциальную силу коалиции S, то есть тот суммарный выигрыш, который гарантированно могут получить игроки из S, если объединятся в коалицию и будут действовать совместно.
    Игрой в (0,1)-редуцированной форме (или в (0,1)-форме) называется игра, для которой v(N)=1 и . Игра в (0,1)-форме называется простой, если либо v(S)=0, либо v(S)=1. Простая игра характерна тем, что в ней любая коалиция является либо проигрывающей (если v(S)=0), либо выигрывающей (если v(S)=1).
    Примером простой игры является введенная Р.Боттом [2] и исследованная Д.Джиллисом [3] мажоритарная игра, названная ими (n,k)-игрой. Она определяется условием
     (2)
    где k - фиксированное целое число, .
    В форме таких игр достаточно адекватно представляются различные модели голосования. Например, правилу простого большинства соответствует случай k=n/2, а правилу "двух третей" - квалифицированного большинства - случай k=2n/3.
    Дележом в игре n лиц с характеристической функцией v называется вектор , удовлетворяющий условиям: Множество всех дележей в игре v обозначим I.
    Для простой игры n лиц множество дележей определяется условиями:
    На множестве всех дележей введем отношение предпочтения.
    Дележ x доминирует дележ , если найдется такая коалиция , что
    Легко видеть, что в простых играх доминирование возможно только по выигрывающим коалициям.
    Дадим определение решения коалиционной игры n лиц по фон Нейману - Моргенштерну.
    Множество дележей L называется внутренне устойчивым, если никакие два дележа из L не доминируют друг друга. Множество называется внешне устойчивым, если . Множество дележей L называется NM-решением, если оно внутренне и внешне устойчиво.
    В общем случае (для произвольной игры) задача нахождения NM-решения, а тем более всех NM-решений является очень трудной. К настоящему времени NM-решения найдены только для некоторых отдельных классов игр (подробнее см. обзор [4]).
    Даже сравнительно простые игры могут иметь очень много NM-решений. Например, Р.Ботт [2] описал все симметричные решения (n,k)-игр, а Д.Джиллис [3] нашел огромное число разнообразных несимметричных решений таких игр.
    Далее мы покажем, что любая (n,k)-игра может быть рассмотрена, как игра на матроиде специального вида. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Использование финансов для решения социальных проблем
Просмотров:111
Описание: СОДЕРЖАНИЕ Введение 1. Расходы государства на социальные нужды 1.1 Сущность расходов государства на социальные нужды 1.2 Группы расходов на социальные нужды 2. Финансовые методы повышения жизненного уро

Название:Применение теории решения изобретательских задач при создании новой техники
Просмотров:151
Описание: СОДЕРЖАНИЕ   ВВЕДЕНИЕ ПРИМЕНЕНИЕ ТЕОРИИ РЕШЕНИЯ ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ ПРИ СОЗДАНИИ НОВОЙ ТЕХНИКИ 1. Закон полноты частей системы 2. Закон «энергетической проводимости» системы 3. Закон согласования

Название:Исследование правового института судебного решения
Просмотров:99
Описание: Введение Судебное решение по гражданскому делу – институт, теоретической разработке которого в науке гражданского процессуального права уделялось серьезное внимание. Интерес, проявленный процессуальной

Название:Научная организация творческого процесса. Алгоритм решения изобретательских задач
Просмотров:120
Описание: СОДЕРЖАНИЕ   Введение Научная организация творческого процесса Алгоритм решения изобретательских задач Литература Приложения процесс творчество алгоритм изобретательство Введение Тем

Название:Методы решения задачи о рюкзаке
Просмотров:105
Описание: Министерство образования и науки Российской Федерации. Государственное образовательное учреждение высшего профессионального образования «Вятский государственный гуманитарный университет» ФАК

 
     

Вечно с вами © MaterStudiorum.ru