MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Решение одного нелинейного уравнения

Название:Решение одного нелинейного уравнения
Просмотров:86
Раздел:Математика
Ссылка:Скачать(26 KB)
Описание: Реферат на тему: Решение одного нелинейного уравнения Введение Данная лабораторная работа включает в себя четыре метода решения одного нелинейного уравнения. Использующиеся

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Реферат

на тему:

Решение одного нелинейного уравнения


Введение

Данная лабораторная работа включает в себя четыре метода решения одного нелинейного уравнения.

Использующиеся методы решения одного нелинейного уравнения:

Метод половинного деления.

Метод простой итерации.

Метод Ньютона.

Метод секущих.

Также данная лабораторная работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Microsoft Visual C++ 6.0.

Описание метода:

Пусть задана функция f (x) действительного переменного. Требуется найти корни уравнения f (x) =0 (1) или нули функции f (x).

Нули f (x) могут быть как действительными, так и комплексными. Поэтому наиболее точная задача состоит в нахождении корней уравнения (1), расположенных в заданной области комплексной плоскости. Можно рассматривать также задачу нахождения действительных корней, расположенных на заданном отрезке.

Задача нахождения корней уравнения (1) обычно решается в 2 этапа. На первом этапе изучается расположение корней и проводится их разделение, т.е. выделяются области в комплексной области, содержащие только один корень. Тем самым находятся некоторые начальные приближения для корней уравнения (1). На втором этапе, используя заданное начальное приближение, строится итерационный процесс, позволяющий уточнить значение отыскиваемого корня.

Численные методы решения нелинейных уравнений являются, как правило, итерационными методами, которые предполагают задание достаточно близких к искомому решению начальных данных.

Существует множество методов решения данной задачи. Но мы рассмотрим наиболее используемые методы решения по поиску корней уравнения (1): метод половинного деления (метод бисекции), метод касательных (метод Ньютона), метод секущих и метод простой итерации.

Теперь отдельно по каждому методу:


1. Метод половинного деления (метод бисекции)

Более распространенным методом нахождения корней нелинейного уравнения является метод деления пополам. Предположим, что на интервале [a, b] расположен лишь один корень x уравнения (1). Тогда f (a) и f (b) имеют различные знаки. Пусть для определения f (a) >0, f (b) <0. Положим x0= (a + b) /2 и вычислим f (x0). Если f (x0) <0, то искомый корень находится на интервале [a, x0], если же f (x0) >0, то x принадлежит [x0, b]. Далее из двух интервалов [a, x0] и [x0, b] выбираем тот на границах, которого функция f (x) имеет различные знаки, находим точку x1 - середину выбранного интервала, вычисляем f (x1) и повторяем указанный процесс. В результате получаем последовательность интервалов, содержащих искомый корень x, причем длина каждого последующего интервала вдвое меньше, чем предыдущего. Процесс заканчивается, когда длина вновь полученного интервала станет меньше приближенной точности (>0), и в качестве корня x, приближенного принимается середина этого интервала.

 

2. Метод касательных (метод Ньютона)

Пусть начальное приближение x0 известно. Заменим f (x) отрезком ряда Тейлора

f (x) ≈ H1 (x) = f (x0) + (x - x0) f ' (x0) и за следующее приближение x1 возьмем корень уравнения H1 (x) = 0, т.е. x1=x0 - f (x0) / f ' (x0).

Вообще, если итерация xk известна, то следующее приближение xk+1 в методе Ньютона определяется по правилу xk+1=xk-f (xk) /f' (xk), k=0, 1, … (2)

Метод Ньютона называют также методом касательных, так как новое приближение xk +1 является абсциссой точки пересечения касательной, проведенной в точке (xk, f (xk)) к графику функции f (x) с осью Ox.

Особенность метода:

во-первых, метод имеет квадратичную сходимость, т.е. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Отыскание корня уравнения методом половинного деления
Просмотров:77
Описание: Содержание   1. Индивидуальное задание 2. Постановка задачи и формализация 3. Выбор, обоснование, краткое описание методов 3.1 Численное интегрирование 3.1.1 Постановка задачи 3.1.2 Выбор и описание метода

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:230
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

Название:Интегрированный урок математики, русского языка, окружающего мира "Корень (уравнения, слова, растения)"
Просмотров:105
Описание: Конспект интегрированного урока математики, русского языка, окружающего мира «Корень (уравнения, слова, растения)» Цель урока: обобщить представления детей о понятии корень, используемом в таких предметных

Название:Использование разнообразных форм уроков при изучении темы "Квадратные уравнения" в 8 классе
Просмотров:88
Описание: ГОУ СПО "Кунгурское педагогическое училище" ПЦК преподавателей естественно-математических дисциплин Выпускная квалификационная работа по методике математики Использование разнообра

Название:Численное решение уравнения Шредингера средствами Java
Просмотров:146
Описание: Численное решение уравнения Шредингера средствами Java Содержание Введение 1. Уравнение Шредингера и физический смысл его решений 1.1 Волновое уравнение Шредингера 1.2 Волновые

 
     

Вечно с вами © MaterStudiorum.ru