MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Решение уравнений в целых числах

Название:Решение уравнений в целых числах
Просмотров:74
Раздел:Математика
Ссылка:Скачать(221 KB)
Описание: Проблема решения уравнений в целых числах решена до конца только для уравнений второй степени с двумя неизвестными. Отметим, что для уравнений любой степени с одним неизвестным она не представляет сколько-нибу

Часть полного текста документа:

СОДЕРЖАНИЕ:
     1. Уравнения с одним неизвестным 2. Уравнения первой степени с двумя неизвестными 3. Примеры уравнений второй степени с тремя неизвестными 4. Общий случай уравнения второй степени с двумя неизвестными Р А З Р А Б О Т К А П Р О Г Р А М М 5. Программа №1 (уравнения с одним неизвестным)
    ВВЕДЕНИЕ
    Мой курсовой проект посвящен одному из наиболее интересных разделов теории чисел - решению уравнений в целых числах.
    Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших проблем теории чисел.
    Проблема решения уравнений в целых числах решена до конца только для уравнений второй степени с двумя неизвестными. Отметим, что для уравнений любой степени с одним неизвестным она не представляет сколько-нибудь существенного интереса, так как эта задача может быть решена с помощью конечного числа проб. Для уравнений выше второй степени с двумя или более неизвестными весьма трудна не только задача нахождения всех решений в целых числах, но даже и более простая задача установления существования конечного или бесконечного множества таких решений.
    В своем проекте я постаралась изложить некоторые основные результаты, полученные в теории; решения уравнений в целых числах. Теоремы, формулируемые в нем, снабжены доказательствами в тех случаях, когда эти доказательства достаточно просты.
    
    1. УРАВНЕНИЯ С ОДНИМ НЕИЗВЕСТНЫМ
    Рассмотрим уравнение первой степени с одним неизвестным (1) Пусть коэффициенты уравнения и - целые числа. Ясно, что решение этого уравнения будет целым числом только в том случае, когда нацело делится на . Таким образом, уравнение (1) не всегда разрешимо в целых числах; так, например, из двух уравнений и первое имеет целое решение , а второе в целых числах неразрешимо.
    С тем же обстоятельством мы встречаемся и в случае уравнений, степень которых выше первой: квадратное уравнение имеет целые решения , ; уравнение в целых числах неразрешимо, так как его корни ,иррациональны.
    Вопрос о нахождении целых корней уравнения n-ой степени с целыми коэффициентами (2) решается легко. Действительно, пусть - целый корень этого уравнения. Тогда , . Из последнего равенства видно, что делится без остатка; следовательно, каждый целый корень уравнения (2) является делителем свободного члена уравнения. Для нахождения целых решений уравнения надо выбрать те из делителей , которые при подстановке в уравнение обращают его в тождество. Так, например, из чисел 1, -1, 2 и -2, представляющих собой все делители свободного члена уравнения , только -1 является корнем. Следовательно это уравнение, имеет единственный целый корень . Тем же методом легко показать, что уравнение в целых числах неразрешимо.
    Значительно больший интерес представляет решение в целых числах уравнении с многими неизвестными.
    
    2. УРАВНЕНИЯ ПЕРВОЙ СТЕПЕНИ С ДВУМЯ НЕИЗВЕСТНЫМИ
    
    Рассмотрим уравнение первой степени с двумя неизвестными , (3) где и - целые числа, отличные от нуля, а - произвольное целое. Будем считать, что коэффициенты и не имеют общих делителей, кроме единицы. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Нестандартные методы решения уравнений и неравенств
Просмотров:229
Описание: СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ИСТОРИЧЕСКАЯ СПРАВКА 2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ     2.1 Использование монотонности функции 2.2 Использование ограниченности функции 2.3 Использование перио

Название:Неравенства
Просмотров:235
Описание: Содержание   1)  Основное понятие неравенства 2)  Основные свойства числовых неравенств. Неравенства содержащие переменную. 3)  Графическое решение неравенств второй степени 4)  Системы нера

Название:Доказательства неравенств с помощью одномонотонных последовательностей
Просмотров:233
Описание: Муниципальное общеобразовательное учреждение Средняя общеобразовательная школа № 4 Секция: математика ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА по темеДоказательства неравенств с помощью одномонотонных последо

Название:Отыскание корня уравнения методом половинного деления
Просмотров:72
Описание: Содержание   1. Индивидуальное задание 2. Постановка задачи и формализация 3. Выбор, обоснование, краткое описание методов 3.1 Численное интегрирование 3.1.1 Постановка задачи 3.1.2 Выбор и описание метода

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:225
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

 
     

Вечно с вами © MaterStudiorum.ru