MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Сборник Лекций 2 по Мат.Анализу

Название:Сборник Лекций 2 по Мат.Анализу
Просмотров:224
Раздел:Математика
Ссылка:Скачать(360 KB)
Описание: Пусть имеется n+1 переменная x1, x2, ..., xn, y, которые связаны между собой так, что каждому набору числовых значений переменных x1, x2, ..., xn соответствует единственное значение переменной y. Тогда говорят

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

§5. Экстремум функции двух переменных.
    Точка M0(x0,y0) является точкой максимума (минимума) функции z = f(x,y), если найдется такая окрестность точки M0, что для всех точек M(x,y) из этой окрестности выполняется неравенство f(x,y)< f(x0,y0) ( f(x,y)> f(x0,y0)).
    Точки максимума и минимума называются точками экстремума.
    
    
    
    Сформулируем необходимое условие экстремума. Если в точке экстремума существует первая частная производная (по какому-либо аргументу), то она равна нулю.
    Точки экстремума дифференцируемой функции (то есть функции, имеющей непрерывные частные производные во всех точках некоторой области) надо искать только среди тех точек, в которых все первые частные производные равны нулю.
    Там, где выполняется необходимое условие, экстремума может и не быть (здесь полная аналогия с функцией одной переменной).
    Пример: z = xy; zx? = y; zy? = x; zx?(0,0) = 0; zy?(0,0) = 0.
    Обе частные производные в точке (0,0) обращаются в 0. Однако точка (0,0) не является точкой экстремума, так как в ней самой z = 0, а в любой её окрестности есть точки, где z(x,y) > 0 (это точки, лежащие внутри первого и третьего координатных углов), и есть точки, где z(x,y) < 0 (это точки, лежащие внутри второго и четвертого координатных углов).
    Для ответа на вопрос, является ли точка области определения функции точкой экстремума, нужно использовать достаточное условие экстремума. Ниже приводится его формулировка.
    Пусть zx?(x0,y0) = 0 и zy?(x0,y0) = 0, а вторые частные производные функции z непрерывны в некоторой окрестности точки (x0,y0). Введем обозначения: A = zxx??(x0,y0); B = zxy??(x0,y0); C = zyy??(x0,y0); D = AC - B2.
    Тогда, если D < 0, то в точке (x0,y0) экстремума нет.
    Если D > 0, то в точке (x0,y0) экстремум функции z, причем если A > 0, то минимум, а если A < 0, то максимум.
    Если D = 0, то экстремум может быть, а может и не быть. В данном случае требуются дополнительные исследования.
    Исследование функции двух переменных на экстремум сводится к следующему: сначала выписываются необходимые условия экстремума: zx?(x,y) = 0; zy?(x,y) = 0 которые рассматриваются как система уравнений. Ее решением является некоторое множество точек. В каждой из этих точек вычисляются значения D и проверяется выполнение достаточных условий экстремума. §6. Метод наименьших квадратов
    Пусть проводится n однородных испытаний или экспериментов, и результатом каждого испытания является пара чисел - значений некоторых переменных x и y. Испытание с номером i приводит к числам xi, yi. В качестве испытания можно, например, рассматривать выбор определенного предприятия в данной отрасли промышленности, величиной x считать объем производства продукции (например в миллионах рублей), величиной y - объем экспорта этого вида продукции (в миллионах рублей), и обследовать n предприятий отрасли.
    Итогом этих испытаний является таблица: . . . . . . где каждому числу xi (величину рассматриваем как независимый показатель или фактор) поставлено в соответствие число (величину рассматриваем как зависимый показатель - результат).
    В качестве значений часто рассматриваются моменты времени: t1, t2, ..., tn, взятые через равные промежутки. Тогда таблица . . . . . . называется временным рядом.
    Нас интересует вопрос, как найти приближенную формулу для функции y = f(x), которая "наилучшим образом" описывала бы данные таблицы.
    Пусть точки с координатами (xi,yi) группируются на плоскости вдоль некоторой прямой. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:94
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:75
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:196
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:140
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:268
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

 
     

Вечно с вами © MaterStudiorum.ru