Синтезы органических соединений на основе оксида углерода 
Помимо синтезов органических соединений из СО и Н2 – углеводороды, олефины, в том числе изобутилен с высокими показателями (селективность > 90%), спирты, в том числе изобутанол с выходом ~70%, метанол и др. – оксид углерода взаимодействует с различными органическими молекулами без и с участием Н2.
 Оксосинтез
  
 Первый важный промышленный синтез альдегидов и спиртов по реакции СО и Н2 с олефинами был открыт в 1939 г О. Рёленом. Процесс получил название “оксосинтез” (oxo-process), а реакцию синтеза альдегидов называют реакцией гидроформилирования, например:
      (1)
 В реакции используют этилен, пропилен, изобутилен, стирол и высшие a-олефины (для получения высших спиртов нормального строения). Процесс проводят в органических растворителях или в жидких олефинах.
 Первым катализатором процесса были комплексы кобальта, а в качестве исходного комплекса использовали кластер Co2(CO)8. Стадии процесса – типичные реакции для металлокомплексного катализа.
         Основные формы катализатора в растворе – HCo(CO)4 и C2H5COCo(CO)4.
 Процесс требует высокой температуры ~ 150оС и, следовательно, высокого давления (> 30 атм) для предотвращения распада термически неустойчивых комплексов Со. Критическое давление Р > 10 атм при 120оС. Строгая кинетическая модель этого сложного процесса пока не получена. Отмечено сильное торможение оксидом углерода и важная роль координационно-ненасыщенных комплексов HCo(CO)3 и C2H5COCo(CO)3. Экспериментально полученное кинетическое уравнение (2)
      (2)
 превращается в уравнение (3), описывающее процесс в узком интервале РСО
 ,       (3)
 где n ³ 2.
 В ходе реакции имеет место частичное гидрирование альдегидов до спиртов. Важным показателем процесса является соотношение альдегидов нормального (n) и изостроения (i). С целью повысить соотношение n/i и смягчить условия процесса исследовали другие каталитические системы (см. таблицу).
 Таблица. Катализаторы оксосинтеза.
  Условия, показатели HCo(CO)4 HCo(CO)3L L – PBu3 HRh(CO)L3 L – PPh3 T, oC 12 –160 (опт. 150) 160–200 80–120 Р, атм 200–350 50–100 15–50 Альдегиды, % 87 – 96 Спирты, % 10 80 – n/i 80:20 88:12 92:8 Алканы, % 1 15 2 
 Наиболее мягкие условия проведения процесса установлены для комплексов Rh(I), которые более, чем в 104 раз активнее карбонильных комплексов Со. В случае комплексов Rh(I) кинетическое уравнение (4) заметно отличается от уравнения (3)
    (4)
 Нулевой порядок по олефину объясняют лимитирующей стадией
  (5)
 при условии, что весь [Rh]S практически находится в форме ацильного комплекса родия(I).
 В случае малоактивных олефинов лимитирующая стадия – взаимодействие HRh~ с олефином, в этом случае гидридные комплексы родия склонны взаимодействовать друг с другом с образованием кластеров Rh(0), часть которых образуется необратимо и приводит к дезактивации катализатора. На примере HRh(CO)4 схема превращений выглядит следующим образом:
  Кластер Rh4(CO)12 при взаимодействии со смесью СО и Н2 превращается в активный HRh(CO)4, а кластер Rh6(CO)16 – уже нет. Предполагают, что свободный HRh(CO)4 принимает участие в стадиях (4) и (5). Таким образом, более активный олефин, ускоряя процесс перехода HRh~ в RCORh, уменьшает концентрацию HRh~ и тем самым “защищает” катализатор от дезактивации. Аналогичная картина имеет место и для фосфиновых комплексов родия.
 Несмотря на явно более эффективный и селективный процесс в случае родиевых катализаторов, высокая стоимость родия делает кобальтовые и родиевые системы близкими по экономическим показателям.  ............